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Abstract

Information, Computation, and the Nature of Cognition: A Critique of Com-

putational Approaches to Understanding and Creating Minds

Cognitive scientists generally subscribe to an information-processing model of mind and

implement this model through computational methods. Information processing is under-

stood to be generation and composition of informational primitives into more complex

pieces of information in response to signals extracted from the environment. Computa-

tionalism offers a powerful methodology for carrying out information processing, with

abstract tokens standing in for pieces of information, and new information structures being

created through application of rules. This purely syntactic model of cognition is unable,

however, to explain the nature of semantic information. Modifications of Shannon infor-

mation theory and applications of principles of natural selection fail to provide a non-syn-

tactic account of the nature and origin of semantic information. Purely syntactic

explanations of semantic information fail to capture the representational capabilities of

true cognitive agents. Relying on computational explanations of cognitive behavior leads

not only to an explanatory gap, but also to practical failings. These failings constitute the

specific and general frame problems. To avoid these problems, a model of cognition that

focuses on the adaptive capabilities of its realizing hardware must be adopted. Evolution-

ary and ecological models only provide pieces of a final theory. A high-level model for

cognition can be found in the field of complex and self-organizing systems, a branch of
vii



roup

ologi-

s the
dynamic systems theory. One possible characterization of the lower-level mechanisms

responsible for the high-level behavior is given by Edelman’s Theory of Neuronal G

Selection. What emerges is a theory with strong similarities to behaviorism and tele

cal functionalism, although without the deficiencies of either theory. This theory offer

foundation for a new understanding of the nature of representation and information.
viii



Introduction

If there is any view that unites Dynamic Systems Behaviorism the disparate fields gathered

under the banner of cognitive science, it is that the mind/brain is an information processing

machine. Defenders of folk psychology insist that the mind must be understood in terms of

propositional attitudes and their content. Functionalists contend that the mind consists of a

series of algorithms, gathering information and running computations on the assembled

data. Connectionists disagree with functionalists about how this information is stored and

processed, but not about whether information processing is what is going on when we think.

Direct realists go so far as to claim that the world is pre-labeled, and that the mind is just

an information gatherer in its relation to the world. Even eliminative materialists, who are

willing to discard the trappings of folk psychology and functionalism, believe that the

mind/brain is just a highly sophisticated information processor. Painting a discipline with

such a broad brush is likely to cover over nuances of specific theories, but the underlying

unity of cognitive science is only to be found in the overarching theme of information pro-

cessing.

This theme has been popularly embodied in the computer metaphor of mind. While this

metaphor is not embraced by all cognitive scientists, it is emblematic of cognitive science’s

devotion to the notion of the mind/brain as information processor. In keeping with this met-

aphor, cognitive science has followed a research strategy that focuses primarily on the

formal properties of mental states, ignoring to a large degree their environmental context
1



and evolutionary considerations. Many cognitive scientists accept methodological solip-

sism as their research methodology, and those who do not do so explicitly often implicitly

adhere to its dictates. They are encouraged in their efforts to study in isolation specific

aspects of the mind/brain by the many successes that this divide-and-conquer strategy has

yielded in the past few decades. Why tamper with success?

This dissertation takes direct aim at the notion that the mind/brain ought to be studied

as if it were a computer. The mind/brain is not a computer because it is not an information

processor in the sense proposed by cognitive scientists. Proving this is currently an impos-

sible task, for it would require a fully developed theory of the mind/brain. Nonetheless, the

information processing theory of mind harbors inherent flaws that prevent it from achiev-

ing its own comprehensive explanation of consciousness. The disciplines of cognitive psy-

chology, linguistics, and neurobiology have all made great strides while embracing

information processing, and while avoiding the presentation of a theory of consciousness.

Although this avoidance has been due in part to reasonable scientific caution, I will argue

that a more important reason is that the special characteristics of the mind/brain distinguish-

ing it from computers stand in the way of the progress of current information processing

theories.

The information processing approach is implemented by cognitive scientists primarily

along computationalist lines. Computationalism is the view that cognition is computation,

or at least realizable as computation even if not actually implemented as such in living

organisms. Computation is the application of formal rules over abstract tokens that act as

symbols, and computationalism is the natural expression of the information processing

approach because it allows for a direct mapping between chunks of information and these
2
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tokens. The informational structure of thought is therefore decomposable into its primitive

elements, and what role a piece of information plays in cognition is determined by the rules

the token it maps to takes part in.

Even if computationalism enables researchers to analyze how information is expressed

and used in cognitive systems, it nonetheless brings with it severe limitations. Computa-

tional systems are plagued by a host of problems. These include lack of adaptability to their

environment and inability to handle anything other than toy or severely constrained worlds.

These practical problems are indicative of theoretical problems, including the specific and

general frame problems and the symbol-grounding problem. 

To take computationalism’s place, I will sketch an evolutionary-ecological theor

the mind/brain, drawn in part from Gerald Edelman’s (1987, 1989) Theory of Neur

Group Selection (TNGS) and from recent developments in dynamic systems theory.

many of Edelman’s arguments against information processing models are flawed, 

developed a deeply suggestive theory of the brain’s development and functioning tha

into question the validity of the computer model of mind. 

Whereas Edelman’s TNGS offers an account of the neural principles that driv

organization of the brain, dynamic systems theory provides an explanation of the re

between the local neural interactions and global, psychological states. These two th

are combined to provide an account of mind that eschews the information processing

of mind embodied by computationalism, replacing it with a model based on the sp

behavior characteristic of neural systems.

Among philosophers who have taken issue with the computational theory of min

the information-processing model underlying it, Searle stands out as one of the few
3
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has connected the flaws of these two theories. His Chinese Room argument provides the

underlying intuition of this dissertation that there is something missing from the attempt to

understand cognition in terms of syntactic information processing, and this missing ele-

ment is a fully developed theory of semantic information. Searle’s own positive th

however, does little to unravel the mystery of cognition and consciousness, merely d

ing these to be biological phenomena. Searle is right to turn to biological phenome

understand cognition, but wrong to imagine that it is something special about biolo

matter rather than mechanisms that gives brains their unique qualities.

Timothy van Gelder’s exposition of a dynamic systems alternative to computation

is both the inspiration and departure point for the dynamic turn advocated in this dis

tion. Van Gelder has drawn up the preliminary sketch that others have tried to fill

among them, Horgan and Tienson. Cognitive systems are but a subset of dynamic s

and van Gelder, in illustrating the differences between computational and dynami

tems, has glossed over important distinctions within the set of dynamic systems tha

cognition possible. The question to be answered is what is it about biological dynam

tems that gives rise to cognition. This dissertation attempts to begin answering this

tion.

Chapter 1 examines the information processing model and various attempts to d

a theory of semantic information. Among these are Dretske’s (1981) theory of natural

mation, the molecular Darwinist (Eigen 1992; Küppers 1990) account of biological i

mation, and Sayre’s (1986) application of the concept of mutual information from Sha

information theory. Each is found wanting, exposing the explanatory gap in cognitiv

ence between syntactic and semantic information.
4
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Chapter 2 analyzes computationalism and its numerous incarnations to determine

whether they can explain the nature of cognition. Key to this analysis is Searle’s (

Chinese Room argument and the efforts of computationalists to counter it. The dy

systems critique of computationalism is introduced here as well.

Chapter 3 focuses on connectionist claims to have overcome the deficiencies in

tional computationalist approaches to modeling cognition by using important principl

neural architecture and behavior. The claim to exceptionalism is examined in the li

connectionist successes, and is found to be exaggerated. One principle of connect

the superposition of representations, is found to be an important exception to trad

computationalist methods.

Chapter 4 presents the specific and general frame problems, as well as an argum

how they arise from computationalist methods. Recent efforts at solving the specific 

problem are considered, and although they present concrete progress, they do not 

keys toward solving, and in fact exacerbate, the general frame problem. The princ

the superposition of information is identified as a possible way out of the frame prob

Chapter 5 examines externalist alternatives to the computationalist understand

information: Millikan’s version of teleological functionalism, Dretske’s Representatio

ism, and Gibson’s ecological approach. The former two ground their externalism i

evolutionary history of organisms, whereas the latter locates information external 

observer in the optic array and its relation to the environment. Evolutionary extern

bears severe defects that make it unworkable as a theory of semanticity. On the othe

ecological externalism, in it more moderate form, offers promising ideas as to how o
5
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isms perceive and cognize the structure of their environment. A brief look is taken at 

Representationalism, a more comprehensive view being given in the final chapter.

Chapter 6 reintroduces the dynamic systems critique of computationalism and ex

how it offers an alternative for understanding the nature of mind. Edelman’s (1987) T

of Neuronal Group Selection is presented to fill out the details left blank by dynamic

tems theory, and a similar move by Thelen and Smith (1994) is examined. Finally, an

native understanding of the relevance of dynamic systems theory to explaining the 

of mind offered by Horgan and Tienson (1996) is critiqued.

Chapter 7 provides a sketch of a theory of mind, Dynamic Systems Behaviorism

demonstrates how it avoids various objections leveled against behaviorism and func

ism. Finally, the nature of representation and information is reexamined in the light o

theory, with a comparison of Dynamic Systems Behaviorism to Michael Tye’s versio

Representationalism.
6
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Chapter 1 Cognition as Information 
Processing

What do DNA, the spiking of neurons, newspaper reports, and computer databases all have

in common? Even if one has but dabbled in the disciplines that are thought to comprise cog-

nitive science, the answer is obvious: They are all forms of information. While cognitive

science’s overarching theme is, as the name denotes, the study of cognition, it is a

assumed that cognition is a species of information processing. What is so thrilling abo

information processing model of mind is the connection it makes to two very diffe

fields: computer science and evolutionary biology. The former holds out the promis

mind can be made silicon, the latter is an account of how the mind might have been

flesh. If the mind is an information processor, then computers not only can help us 

its behavior but also allow us to create artificial minds. And if DNA and thoughts are

units of information, then perhaps the same mechanisms of selection that apply 

former also apply to the latter. Both approaches demystify the mind by removing its a

magical uniqueness and explaining its functioning in mundane terms. Information pro

ing in the form of DNA to RNA transcription existed long before minds. We should no

too surprised that Nature found a way to do real-time transfer and processing of inf

tion. Nor should we be too surprised to find that we can reconstruct Nature's achiev

in the form of silicon, copper, and plastic.

More than any other general perspective on cognition, the idea that the mind is an

mation processor unites the disputing camps of cognitive science. While proponents 

ture-theories of representation eschew computational explanations (Kosslyn 1983
7
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symbolic AI is under assault by connectionists, all agree that the mind is processing infor-

mation. So if it is a scandal, as Andy Clark concedes (1997), that cognitive scientists have

yet to agree on what computation is, then it is an absolute outrage that there is no commonly

agreed upon formulation of what information is. In fact, it is a rarity to see even an informal

definition attempted in works explicitly presenting information-processing models of

mind. So what is it that these researchers are agreeing upon?

There is a commonsense understanding of information that we all share. Information is

a fact or set of facts about the world. Newspapers provide us with information insofar as

they tell us what is going on in the world. But this commonsense understanding is not with-

out ambiguity, an ambiguity too severe for it to be the basis for a research program. People

often speak of being provided ‘false information’, which translates into ‘false facts’ i

are to abide by the above definition. In everyday speech, ‘information’ stands in at 

for ‘facts’, and at other times for ‘representations’ or ‘communications’. That its mea

is ambiguous is of little consequence to the purposes of everyday communication.

At the opposite extreme is Claude Shannon’s (1949) definition of information, a m

ematical formulation that expresses informational content in terms of the syntactic no

of a signal or communication. Shannon Information Theory focuses exclusively on th

tactic aspects of a signal, and in so doing makes little contact with the sense of th

‘information’ used by cognitive scientists. For a signal to have informational con

according to Shannon Information Theory, it need not be ‘about’ anything. Similarly, A

rithmic Information Theory confines itself to considerations of encoding possibilities

signals and not what the signals mean.
8
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Neither of these meanings of information expresses precisely what the cognitive scien-

tist intends when he speaks of information-processing mechanisms in the mind, although

each captures certain aspects. Information, as the commonsense notion would have it, does

relate in some way to the production of representations. Yet information processing, as a

scientifically studied phenomenon, should be explicable in mechanistic, quantifiable terms.

The cognitive scientist looks to explain the origin and transfer of information, so he can’t

rely on the ambiguities of folk psychology. But this information is inherently ‘about’ 

world; it is what an organism possesses when we say it has knowledge. Mathematic

ories of communication do little in the way of explaining the origins of knowledge.

In this chapter, I will show how the few efforts at explaining the nature of informa

and information processing made by cognitive scientists have failed to address the

serious issues. This failure has been caused, and concealed, by a systematic conf

meanings of the term ‘information’. The various meanings of the term ‘information’ co

spond to various levels of analysis of the mind/brain's functioning, as well as to conne

with fields such as molecular biology. In their efforts both to explain the nature of D

and neural functions to a lay public and to unify the sciences that investigate the mind

researchers have ignored significant distinctions between levels of information proce

It is this conflation that has led to the problem of the homunculus in explanations o

mind/brain, as well as the misguided efforts to free cognitive science of this proble

casting the mind/brain as an evolved computer. So long as a folk psychological not

information processing is imputed to neurophysiological structures, the homunculus

lem will remain. This applies to computationalist approaches as well, though this is a

for a later chapter. For now, I confine myself to showing that the notion of information
9
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cognitive scientists assume is at best too ambiguous to serve their purposes, and at worst

self-referential. The latter point I take to be the crux of John Searle’s criticisms of imputing

intentionality to computers. On the former point, I can but express astonishment that so few

have asked the question: what does it mean for a mind to be an information processor? The

answers that have been given yield a notion of information that leaves indeterminate the

difference between information-processing and non-information-processing systems.

1.1 What Is Information?

The literature of cognitive science provides a number of possible definitions of the term

‘information’:

1. Information is a measure of the novelty of a message; this is found more in acc

in Information Theory, though it is often used as a foundation for semantic not

of information, such as that found in (Dretske 1981).

2. Information is a causal/structural relationship between micro- and macrostate

Eigen and his colleagues (Eigen 1992; Küppers 1990) have presented this def

to describe the DNA/Cell-structure relationship, although Dennett (Dennett 19

conflates it with his use of the term.

3. Information is the content of representation (Sterelny 1990).

4. Information is a fact or set of facts about the world. This corresponds roughly t

common-sense notion of information. It is not the same as a true representatio

because the information lies in the object or event appearing to a sentient bein
10
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in its mind. Thus, a newspaper carries information regardless if anyone reads it (see 

Dennett 1998 for an analogy between information and ore, needing to be extracted 

and refined).

5. Information is a normal causal relationship between the way the world is, and what 

goes on in a sentient being’s mind (Dretske 1981).

6. Information is a veridicality relationship between object and representation, with 

veridicality defined in terms of Shannon’s notion of high mutual information (Sayre 

1986).

Perhaps the most unenlightening definition of information is that of Cummins, who, in

defining an information-processing system states:

an information processor is simply a symbol manipulator. Symbols are distinguished
from other things by the possibility or actuality of systematic semantic interpretation.
To alter symbols is therefore to move from one meaning to another, and that is why
symbol manipulation is information processing (Cummins 1983, 34).

Either Cummins has merely stated the truism that information processing is the movement

from one meaning to another (since symbols are meaningful by definition), or he is attempt-

ing to define semanticity in terms of syntax. What remains to be answered is how symbols

acquire semantic interpretation within the system bearing them. A programmer can give a

systematic semantic interpretation of the widget detector that he programmed, but does it

follow that the widget detector’s states have semantic content? If so, does a flow di

of the widget detector, which also can be given a semantic interpretation, have se

content?

The common, implicit definition of information seems to be as stated in 4. Piec

information are facts about the world. Sometimes these facts emanate as waves, 
11



sound

 the

 pro-

s/enti-

latter

gnitive

ational

ify the

ty of a

ymbols

ysical

 much

ation

uppos-

t, what

 infor-
sound waves. The waves themselves are not information. They are just physical phenom-

ena. But they carry information. Information is that which could be deciphered from the

wave about the world in which it originates. There need not be any beings capable of deci-

phering and representing the information, but it is carried nonetheless. To rephrase a philo-

sophical cliché, if a tree falls in the forest and there is no one around to hear it, the 

waves it causes do carry information.

This informal definition of information gives rise to significant problems. It leaves

question ‘What is information?’ unanswered; is information a physical property of a

cess or entity, and if so, what is the nature of that property? Do all physical processe

ties carry information, and how much? I will examine one attempt to answer this 

question, Shannon Information Theory, and demonstrate that it does not serve co

science's purposes. Shannon Information Theory enables us to quantify the inform

content of a signal in terms of the signal's syntax. It does not enable us to quant

semantic content of a signal. Shannon information theory tells us about the probabili

set of symbols occurring as a message. It does not tell us the range of what these s

are about. As such, Shannon Information Theory itself assumes the encodability of ph

signals, and measures this encodability. To give an example, suppose we ask how

information the rings of trees carry. Quantifying this according to Shannon Inform

Theory requires a scheme for encoding the rings as if they constituted a message. S

ing we produce an appropriate coding, we still might ask: what is this message abou

does it tell us? Are the rings of a tree information about the age of the tree? Are they

mation about the climate in which the tree grew? 
12
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In short, we are asking whether the quantity of the semantic content of a particular mes-

sage is bounded in any way, such as by, say, the possible representations sentient beings

can draw from it. We can surely agree that the rings of a tree do not carry information about

the cereal that Al Gore ate this morning, so there are undoubtedly limitations to the quantity

of semantic content a message carries. But we must be careful not to arbitrarily draw these

boundaries based on what seems absurd. One of the favorite examples of popularizers of

chaos theory is the butterfly effect concerning weather systems. Because weather systems

are likely to be chaotic dynamical systems, small perturbations in the systems can cause

them to go from stable to unstable states—or as expressed in Lorenz's famous paper

the flap of a butterfly's wing in Brazil might stir up a tornado in Texas. Such a major e

might be reflected in the rings of Texan trees, or at least contribute to a climate t

reflected in them. Do then the rings of a tree carry information about every minor va

that contributed to their specific formation? 

Even if there are limitations that can be specified in a principled manner, if we ide

‘information about’ with a physical property, we are conceptually multiplying the phys

properties of an object without there being any physical differences corresponding to

different properties. It would seem that the property of carrying X amount of sem

information might not differ physically from the property of carrying Y amount of sema

information. If two tree rings have the same pattern, yet have a different number of c

sources, then the quantity of information carried differs without a physical differe

between the two rings. Similarly, there may be no physical difference between th

rings, yet each has an entirely different causal history. Such a case is improbable, 

impossible. Thus, proponents of information-processing models are faced with the 
13



rr’s

om-

n is a

tional

dopt

uestion

essing

 phi-

ve sci-

igital

 simply

estions

tion, is
question of why we ought to impute a causal difference between a signal that carries X

amount of information about W and a signal that carries Y amount about Z when there is

no physical difference between the two. What is more important, there seems to be no

reason to impute a causal difference between a signal carrying information and one that

does not. If this last point is correct, information-processing models are unnecessary; they

can be superseded by direct explanations in terms of physical structure.

In his discussion of the computational theory of mind, Kim Sterelny (1990) adopted a

three-level stratification of explanations of the mind/brain, drawn from David Ma

(1982) similar differentiation of the levels of information processing devices into the c

putational, the algorithmic, and the hardware levels. Sterelny holds that informatio

phenomenon found only at that highest or ecological level. This is the level of inten

systems, or persons. It is the level that folk psychology describes. I will temporarily a

the stance that what folk psychology describes of persons is roughly accurate. The q

is then how to explain the emergence of such behavior, and whether information proc

models apply to levels below that of the person, say to neurons or neuronal maps. 

Attacking information-processing models of mind is hardly a new endeavor. The

losopher John Searle (1992) has made it the recent focus of his criticisms of cogniti

ence and artificial intelligence. In answering the questions whether the brain is a d

computer and whether the mind is a computer program, Searle has argued that there

isn't a sense in which the brain processes information and therefore these two qu

border on incoherence. Crucial to being an information processor, in Searle’s estima

having syntactic operations, and the brain does not have these because
14
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syntax is essentially an observer-relative notion. The multiple realizability of computa-
tionally equivalent processes in different physical media is not just a sign that the pro-
cesses are abstract, but that they are not intrinsic to the system at all. They depend on
an interpretation from outside. (Searle 1992, 209)

Similarly, 

“functional organization” and “information”... have no causal explanatory power
the extent that you make the function and information specific, they exist only rel
to observers and interpreters. (Searle 1997, 176)

Information and syntax are observer relative properties, and thus not inherent in the p

of the brain. They are found in computers because computer designers put them the

conclusion we are to draw is that what isn't in the brain's physics isn't in the brain. Ac

ing to Searle, the notion that syntax in the brain is the basis for consciousness is no

because syntax does not have any causal powers. Nonetheless, the brain is an int

system, and this inherent intentionality is just a brute fact of brain biology. Notice tha

argument subtly changes the domain in question from physics to biology. Intentiona

presumably not inherent in the brain's physics, intentionality not normally being consi

a proper subject of study for physics (even though physicists are concerned with the 

and nature of observation). It is unclear why this does not disqualify the description 

mind/brain as an intentional system in the same way that it disqualifies the information

cessing account. Before diving fully into Searle's critique, however, I ought to first d

what is meant by information.

1.2 Shannon Information Theory

Just what constitutes information is the source of a great amount of confusion, a

merely among philosophers. For example, Edelman is notorious for attacking the ide

the brain processes information or that it invokes any algorithms, although it will be s
15
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that this critique of Edelman rests on a misunderstanding of what he and his colleagues

mean by the terms ‘information’ and ‘algorithm’. Most often, authors merely assume

there exists a shared and well-defined notion of information such that any effort on

part to explain what they mean by information is superfluous. It is my contention tha

assumption is false, that cognitive science lacks a clear idea of what information is an

it arises. This does not mean there are no theories of information. I will endeavor to

that these theories do not provide cognitive science with a foundation for its informa

processing models.

Claude Shannon inaugurated what is now referred to as Shannon information the

just information theory) in his work “The Mathematical Theory of Communicatio

(1949). Shannon’s mathematical theory concerns only the syntactic aspect of inform

the measure of which is termed entropy. It is a concept similar to that found in therm

namics, but not to be strictly identified with it. Entropy in communication theory is so

times defined as a lack of knowledge. Thus, if a message contains a great deal of n

i.e., what the message carries is not already known, then it has high entropy. This 

that the quantity of information is observer-relative in the sense that it depends on wh

recipient of a message already ‘knows’ or expects in the message. There is no absolu

sure of Shannon information. Entropy in Shannon Information Theory is given by the 

tion

Equation 1-1. Entropy

where K is a positive constant representing the unit of measure, pi is the probability of event

i, and n is the number of possible events (Shannon 1949, 50). This function is at its 

H K p pi i
i

n

= −
=
∑ log

1

16
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mum when the values for pi are equal, and zero when any pi is 1. The more unlikely the

message (the lower its probability), the greater the informational content is. Just what con-

stitutes a ‘message’ is not strictly defined, and thus the notion of information is still 

vague. Note also, this definition makes no reference to the meaning of the message.

meaningless messages can have high informational content, or as Warren Wea

expressed it: “two messages, one heavily loaded with meaning and the other pure no

can be equivalent as regards information” (Weaver 1949, 12). Thus, Shannon inform

theory is concerned only with the quantity of information in a message as determined

probability, not with the everyday sense of information as data about the world, and 

term ‘information content’ should not be confused with the semantic content of a wo

sentence.

As the molecular Darwinist Bernd-Olaf Küppers (1990) has pointed out, the Sha

definition of information seems paradoxical, since information is generally regarde

knowledge while information theory defines it as entropy or lack of knowledge. The p

dox dissolves when you view Shannon information as potential information. What it 

sures is the amount that could be learned from a message, without making any jud

about the meaning of the message. This seems to suggest that Shannon information

mation only in virtue of its knowability by an observer. While the formal definition of inf

mation given above does not include the recipients of a message in the equation, the

of ‘message’ is heavily laden with reference to knowing subjects. Shannon informat

least requires the possibility of potential knowers, or, more accurately, potential dec

since the message need not carry any semantic information in order to be known.
17
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Shannon Information Theory offers the cognitive scientist little in the way of explain-

ing the origin of information as cognitive scientists understand it, namely in the common-

sense way of representations of the world. While this is often acknowledged, it is

nonetheless thought to provide a rough measure of the possible ways to cognize the envi-

ronment from which the information stems (Goonatilake 1991, 12; Holzmüller 1984)

has this realization deterred the likes of Fred Dretske or Kenneth Sayre from tryi

derive a more suitable definition of information from Shannon Information Theory, ef

that will be examined later. First, however, I turn to the work of the molecular Darwin

Manfred Eigen and his colleagues, to determine whether their expositions of the se

and pragmatic levels of information offer an adequate account of its origin.

1.3 Biological Information

It has become standard parlance to speak of DNA and genes as if they were books 

prints containing information about how to construct a phenotype. These books and

prints also have readers, the RNA strands that translate the code into proteins, which

form the organism, enable it to move, and catalyze biochemical reactions among

functions (Brown 1989). According to this understanding of genes, information abou

organism is stored in the genes's amino acids. So how does this information arise,

what sense is it semantic information? Molecular Darwinists (Küppers 1990; Eigen 1

have sought to answer these questions by applying the principle of natural selection

molecular foundations of genetics.

Molecular Darwinism is the theory that “biological information has arisen by the se

tive self-organization and evolution of biological macromolecules” (Küppers 1990, 
18
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Selection determines the arrangements of the ‘symbols’ in the genetic code, and, the

the information that is stored in the genes (Eigen 1992, 13). But what makes these

otide symbols forms of semantic information?

Following Weizsäcker (1971), Küppers holds that semantic information is informa

that is ‘understood’. The relation of ‘understanding’ is a relation between microstate

macrostates. To explain this relation, he uses the unfortunate analogy of syntactic a

of sentence structures. The microstates of a word are the letters, the macrostate is t

itself. Similarly for a sentence, the microstates are the words and the macrostate is t

tence itself. Although these relations are syntactic, what makes them semantic, to K

mind, is that they have some “mutual understanding” (Küppers 1990, 49). The m

understanding is that the structural information of genetic microstates, nucleotides, is

tained completely in the structural information belonging to the concept ‘nucleotide ch

(Küppers 1990, 45). But structural information is merely a Shannon information-theo

measure of the possible variability in a structure. The molecular Darwinist accou

semantic information fails to adequately distinguish between syntactic and semantic

mation. There is, however, an additional ‘pragmatic’ aspect of information, which

molecular Darwinists consider to be necessary for semantic information to arise.

Molecular Darwinists understand the pragmatic aspect of genetic information to 

follows:

The pragmatic aspect of information reveals itself wherever a message or an ev
the widest sense, alters the recipient. By “alters” we mean here both any stru
change in the recipient and any willingness induced in the recipient to carry out a
directed action. (Küppers 1990, 88)
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The pragmatic aspect of neuronal information could be its capacity to alter the structure of

the population or map of neurons in which it participates. Küppers contends that the

matic aspect of information makes the semantic aspect “effective” (1990, 48). 

emerges, vaguely, is a causal account of semantic information, where the causal re

between microstates and macrostates must be selected for.

There are a number of departures from the common sense notion of information

molecular Darwinist approach. At the semantic level, biological structure is informa

only by virtue of its being normally expressed—the semantics of DNA is causal conne

between its structure and the structure of the phenotype. Both the statistical sense of

and Millikan’s sense of ‘having been selected for this particular function’ are applic

here. DNA that is not normally correlated with or does not have the normal function o

ducing a phenotypic structure, such as junk DNA, does not have semantic content, 

there is a possible abstract mapping between it and a possible phenotypic structur

trast this with the intentional-systems-level/folk-psychological understanding of info

tion. Information has an abstract rather than a necessary physico/causal relation

structure it is ‘about’. From the molecular Darwinist perspective, God could have se

messages about how to construct alternative phenotypes into junk DNA, yet it wou

have semantic content. Yet these messages would have semantic content from a fo

chological perspective.

Folk psychology also admits of information that has no effect on its recipient. Re

dant information is one case of this. You can tell a person how to drive to Arizona wh

already knows how and this is still passing information in the folk psychological se

although it is not novel or useful to the recipient. However, from the molecular Darw
20
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perspective, a biological message or event is information only if it normally causes a

change in the structure of the recipient. It might be objected that the directions to Arizona

normally cause a change in the recipient’s informational structure, if not his brain processes,

or normally enable him to find his way to Arizona. But here ‘normally’ must be unders

in its teleonomic—the function of directions to Arizona is to enable people to reach

zona—and not its statistical sense, as the latter would imply that only novel informat

truly information. But the former sense would imply that only useful information is in

mation. That would rule out information such as trivial facts (assuming we do not tak

vacuous position that the function of such facts is to inform). In each case, the folk ps

logical notion of information as facts about the world must be radically altered for 

match the molecular Darwinist understanding.

So which understanding of information should prevail? I will argue that neither pos

explains the origin and nature of meaning and intentionality in the mind/brain. The ca

evolutionary account of the molecular Darwinists merely describes the interpretatio

make of genes and other biological structures, interpretations based on causal conn

that we discover. A nucleotide or chain of nucleotides is not a representation of a p

type, but rather a mechanism for producing it. The question remains whether the fir

a neuron is a representation. In contrast to the molecular Darwinist theory of sem

information, which identifies semantics at the level of molecules and genes, Fred D

has sought to develop a causal-evolutionary theory of semantic information at the le

neural structures (Dretske 1981). 
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1.4 Why Dretske’s Theory of Information Fails to 
Provide a Foundation for Cognitive Science

Although lacking a formal definition of information, and, hence, a definition of what it

means to be an information processor, computational cognitive scientists nonetheless

attribute several properties to information. Information must be in some sense extractable

from the environment (or internal states). It must provide a reasonably reliable representa-

tion of the environment (or internal states). And it must be storable and manipulable in a

manner that ensures that it is both retrievable and non-degenerate in the sense that noise

introduced into the information is not so severe that the mapping is lost or is unusable. Yet,

these properties are seemingly inconsistent. The first suggests that information is the input

to a cognitive agent. The second implies that information is the mapping of input to the

external world. The third hints that information consists of the physical symbols that are

stored, retrieved, and manipulated. 

In Knowledge and the Flow of Information (1981), Fred Dretske attempted to develop

a theory of information derived from Shannon’s that is both amenable to cognitive

ence’s needs and resolves the apparent paradoxes in these needs. Dretske's theo

guishes information proper from both Shannon information and meaning:

signals may have a meaning but they carry information. What information a signa
ries is what it is capable of “telling” us, telling us truly, about another state of aff
Roughly speaking, information is that commodity capable of yielding knowledge,
what information a signal carries is what we can learn from it. (Dretske 1981, 44)

He nonetheless formalizes his notion of information in terms of the Shannon functio

novelty of a signal and the average entropy, but only as a comparative function to co

whether one message contains more or less information than another. Dretske-infor
22
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is not measured in terms of the probability of a message, but in terms of its lack-of-knowl-

edge reduction or possibility-elimination. For example, the more detailed the directions are

that a gas station attendant gives you about where in the city of Chicago you can find a

hotel, the more possible places for its location his instructions have reduced from your orig-

inal knowledge that there is a hotel in Chicago, and thus the more information he has pro-

vided. 

Dretske stipulates that the recipient of the message need not know how many possibil-

ities were reduced, that the information content does not depend on this knowledge. None-

theless, the number of possibilities reduced does depend on your prior knowledge about

where a hotel might be found. You need not know that there are, say, 1 million possible

locations for a hotel in Chicago for the reduction of possibilities to be 999,999 locations.

This is a significantly smaller reduction than if you had only known that there is a hotel in

Illinois. Dretske’s example of comparing information content in messages does not a

this aspect of the subject-relativity of information. Dretske compares two message

telling you that Denny lives in Madison, WI, and another telling you that he lives on Ad

Street in that city. Since the number of places where Denny could live in Madison is l

the latter message than the former, the equivocation of the message is less and it

more information. Dretske appropriates the term equivocation from Shannon inform

theory, using it to mean, in this instance, how many places could have been mean

that a particular place was mentioned. Saying only that Denny lives in Madison leaves

the possibility that the communicator meant Denny lives on a street other than Ada

Shannon information theory, equivocation is “the uncertainty as to what symbols w

transmitted when the received symbols are known” (Pierce 1980). 
23
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This sets the stage for Dretske’s exposition of the semantic level of informa

Dretske places three conditions on a signal for it to have the informational content 

semantic sense that s is F:

(A) The signal carries as much information about s as would be generated by s’s
F.
(B) s is F.
(C) The quantity of information the signal carries about s is (or includes) that qua
generated by s’s being F (and not, say, by s’s being G). (Dretske 1981, 63-64)

Condition (A) sets a lower bound on the amount of information a signal can carry if it

carry the information that s is F. Thus, if s’s being F ‘generates’ N bits of information,

a signal must have at least N bits of information to carry the information that s is F. D

its similar formulation, condition (C) is meant to designate an important difference 

condition (A). Condition (A) stipulates a lower bound on the informational quantity 

signal. Condition (C) requires not only that the right amount of information be presen

also that the right information is carried. If s's being G generates the same amount o

mation as s’s being F, then a signal carrying the information that s is G satisfies con

(A) for s’s being F as well as s’s being G. It only satisfies condition (C) for s's bein

because only that information is being carried, and not the information that s is F.

Drestke offers the following definition of informational content to meet all three c

ditions:

Informational content: A signal r carries the information that s is F = The conditio
probability of s’s being F, given r (and k), is 1 (but, given k alone, less than o
(Dretske 1981, 65)

The variable k quantifies what the recipient of a message already knows. In other w

the recipient might have knowledge that narrows the possibilities of what a message

indicate. If your partner in a card game tells you that his card is either the King of H
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or the Ace of Clubs, and you hold the Ace of Clubs in your hand, your prior knowledge

makes the probability that he holds the King of Hearts to be 1. 

What Dretske is trying to achieve with these definitions is to establish a relationship

between information, truth, and causality such that a message carries information about s

being F just in that case where it is true that s is F and that information is about s by virtue

of its being caused by s. Dretske’s paradigmatic example is the question whether the 

rons in a frog’s brain that fire when a bug is in view are indeed bug-detectors:

The fact that a small moving bug on a light background causes a certain set of n
to fire in the frog's brain and this, in turn, triggers a response on the part of the
(“zapping” the bug with its tongue) does not mean that the neurons, or the frog
receiving information to the effect that there is a bug nearby . . . It seems clear th
tain neurons are labeled “bug detectors,” not simply because a moving bug causes them
to fire, but because, in the frog's natural habitat, only a moving bug (or relevantly equiv
alent stimulus) causes them to fire. (Dretske 1981, 35)

Dretske insists that the conditional probability of an event given the message must 

the message is to bear information, because otherwise it would violate his Xerox prin

namely if A carries the information that B, and B carries the information that C, then A

ries the information that C. If we were to allow lower probabilities, then a chain of m

sages would result in the final message not bearing information (falling below the acc

conditional probability, because these lower probabilities are all multiplied), some

Dretske considers absurd.

So what is the upshot of Dretske’s view of information? It is an account of the d

ence that information makes in cognition. According to Dretske, for information to b

any interest in studying the mind, it must have causal efficacy. A signal bearing inform

processed by the brain must have a different effect than a signal that bears no suc

mation. It is important to remember that Dretske differentiates information-bearing si
25
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from non-information-bearing signals according to whether the condition they are about

actually obtains in the world. Thus two signals could have the exact same physical proper-

ties, yet one bear information and the other not. So how could the fact that one bears infor-

mation make a causal difference? Dretske offers discrimination learning in rats as one

example of information making a difference. A rat hears a tone and is either rewarded or

punished according to whether it, say, rings a bell. It originally has some internal structure

S that is occasioned by the tone, and this structure takes on functions through the course of

training that it originally did not have. These functions cause the rat to ring the bell when,

and only when, the tone sounds. Dretske argues that the difference between S prior to train-

ing and after training is that S has become an information-bearing structure. To think oth-

erwise, he contends, is to ascribe magical properties to the structure S. The change in the

rat's behavior cannot be ascribed to changes in neural structure, rather, “[w]hat expla

perceptual state's newfound causal power is, in other words, its semantic, informatio

intentional properties; not what it is, but what it is about” (Dretske 1990, 123).

Here Dretske is simply wrong in his contention that neurophysiological data ca

explain the change in the rat's behavior. The structure S has different causal powers b

it has changed during learning. Long-term potentiation is a likely candidate for a n

physiological explanation of the change. Dretske’s error rests largely on an assump

modularity about the neural processes involved. Presumably, if there were a modul

ceptual state that always occurred when the tone was heard by the rat, and it was t

ceptual state alone that resulted in the rat’s changed behavior, then Dretske's expl

would be preferred to no explanation. But we are not stuck with an a priori assumption of

modularity in explaining the rat’s behavior from a neural perspective. There is a large
26
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of neurophysiological research documenting changes in neural structure correlated with

learning. It is, in fact, Dretske’s explanation that invokes magic when he contends th

semantic properties of a neural structure have causal powers. And as Brian Cantwel

has pointed out, a satisfactory account of learning in the rat can be given simply by

ence to the causal relationships between S, the tone, and the prescribed behavior

1990).

A further problem with Dretske’s explanation of the role of information in cognitio

his insistence that a message only bears informational content if the condition it is

obtains with probability 1 whenever the message is sent. Given that Dretske has re

the Shannon information theory formula of information as averaged over all possible

sages, to say that a condition obtains with probability 1 does not mean an average o

possible instances, but simply that whenever P occurs, it only has informational con

the condition it is about obtains. Dretske is strictly identifying informational content 

truth conditions. But suppose we are training a rat, and we only establish an asso

between message and conditions of 0.95. If the rat still learns the association even 

false message is presented, then Dretske’s theory is empirically false. 

Dretske’s account of the nature of information fails to establish a link between th

naling found in dumb, low-level neural processes and the everyday sense of informa

what is found in newspapers, scientific articles, and recipe books. Nonetheless, Dre

work has highlighted distinctions between knowledge, belief, and what information m

be, distinctions that are often papered over in artificial intelligence research. If a com

has proposition X in its database, the temptation is to say the computer believes prop

X and it knows proposition X, treating the two mental states as equivalent. Clearly, c
27
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tive science must address the important questions of what is information, how does it arise,

and what is its relation to knowledge and belief if it is to explain human cognition. So what

alternatives to Dretske’s scheme are available?

1.5 A Misapplied Concept: Sayre’s Use of Mutual 
Information to Explain Semantic Information

Like Dretske, Sayre attempts to provide an account of semantic information by extending

concepts from Shannon information theory. In place of Dretske’s causal explanati

semanticity, Sayre proposes that the reliability of a signal, understood as the mutua

mation between source and terminus of the signal, establishes its semantic content. B

reliable information channels provide a selective advantage, nature selects, accor

Sayre, for greater reliability; this establishes for Sayre an evolutionary grounding fo

appearance of semanticity.

The mutual information measure of an information channel is defined as the diffe

between the a priori entropy of a signal and the signal’s equivocation. The a priori en

of a signal is the measure of entropy at the source without knowledge of the signal a

at the terminus. A signal’s equivocation is a measure of the uncertainty remaining 

what symbols where transmitted from the source given the output signal at the termi

the terminus is a perfect indicator of the source, then the equivocation is 0 and the 

information is equal to the a priori entropy. Noise in the information channel is a pos

cause for increased equivocation.

Sayre uses the human visual system to elucidate how mutual information und

semanticity and intentionality:
28
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In visual perception . . . the relationship of intentionality is quite literally a relation-
ship of high mutual information between a set of objective circumstances and a repre-
sentation in the cortex of the perceiving organism. The representation picks out that
particular set of circumstances, by virtue of its being the only object in the perceptual
scene with which the representation shares that relationship. Through such a represen-
tation the organism’s perception is directed upon a specific object, which is thereby the
object to which the representation refers. By sharing identically in its particular struc-
ture, the representation is true of the corresponding object.

But these are precisely the characteristics—intentionality, reference, truth, d
tion upon an object—that serve as paradigms of semantic features in CS [Cognitiv
ence] literature. (Sayre 1986, 136)

Increasing the reliability of a channel results in increasing the degree of identity be

representation and object. Thus, Sayre subscribes to a form of direct realism, a poin

eager to make.

Sayre’s account is vulnerable for this very direct realism. The visual system, by s

ing aspects of the visual signal, reduces the amount of information available at the ter

The most obvious of these reductions is from the 3-D world of the object to the 2-D w

of the representation (Daugman 1986). As Daugman points out, one cannot truly co

a measure of fidelity when the dimensionality between what is being compared cha

Furthermore, Sayre’s measure of reliability is unidirectional: There is a distinct sourc

distinct terminus which cannot be reversed. But information theory holds that the re

of mutual information is simply between two probability distributions and what is de

nated as ‘input’ and ‘output’ is irrelevant (Daugman 1986, 140).

Finally, even Sayre's reliance on evolutionary theory to somehow legitimize his t

is misplaced, because the accuracy of a representational structure is only one fa

determining its selective value. Other factors include how fast a representation c

developed and how expensive (in terms of what sorts of physical structures are requ

is to develop it. While these issues will be addressed at length in a later chapter, it i
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that mutual information does not provide an explanation for the origin or nature of seman-

ticity. So the question remains, given the rather obvious and devastating flaws in S

theory, whether any account of semantic information processing is available to the 

tive scientist. 

1.6 Confusing Symbols, Representations, and 
Information

Efforts at explaining intelligence by computationalists have focused largely on the n

of symbols and how they are grounded, despite the common references to intellige

tems as information-processing systems. This is due to an identification of symbols emb

ded in cognitive systems with information. To process information is to manipu

grounded symbols, as Cummins (1983) has suggested. The problem of the nature o

mation then reduces to the problem of how symbols can be grounded, which is still 

trivial problem. What attempts at solving the symbol-grounding problem most clearly 

onstrate, however, is not how the mind/brain links its representations to the world, bu

information cannot be identified with grounded symbols.

‘The symbol-grounding problem’ is Stevan Harnad's term for the collection of dil

mas that are implied by Searle's Chinese Room (1980) example and the Frame P

(Harnad 1990). The primary difficulty is how meaningless symbols can come to 

meaning, or how syntactic systems give rise to semantics. As Harnad (1990), Searle

1997) and others have pointed out, the interpretability of a system as having semanti

not imply that those semantics are intrinsic to the system. More recently, Searle has 

that the interpretability of a system as having syntax does not imply that the syntax is 
30
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sic to the system. In fact, no syntax is ever intrinsic to a system, since it is merely a catego-

rization of the behavior of a system by an outside observer. Even if we are to assume that

Searle is wrong about the possibility of syntax being intrinsic to a system, we are still faced

with the overwhelming problem of how syntactic structures acquire meaning. Theories

such as the Language of Thought that have previously dominated cognitive science assume,

we shall see later, the existence of a built-in interpretation, sometimes likened to a compiler

for generating machine code from high-level languages used in computers (Fodor 1975).

But merely presupposing a built-in interpreter does little to explain how the interpretation

of symbols is accomplished, as is now widely acknowledged.

Harnad’s solution is to link symbols to the world via two forms of what Harnad con

ers to be non-symbolic representation: iconic and categorical representations. The 

are “analogs of the proximal sensory projections of distal objects and events” (H

1990, 335). While Harnad does not offer much in the way of neural correlates of eithe

of representation, a straightforward example of iconic representations might be the

of the simple cells in the visual cortex in response to the presence of edges in the

field. Harnad’s example stimulus, however, is far more complex. He defends a prom

theory in cognitive psychology, namely that iconic representations of such complex o

as horses enable us to carry out discrimination between objects in the world without 

sarily being able to identify their category. Categorical representations arise from red

the properties of iconic representations to the invariant features, e.g., to those pro

that single out horses as horses, allowing for identification of objects rather than me

crimination. Harnad further contends that he and his colleagues ought not to be requ

provide neural correlates just yet, since this would stifle cognitive theories by forcing 
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to rely on quite preliminary research in the neurosciences. This will become an issue later

when I examine whether cognitive scientists such as Harnad are proposing impossibility

engines, after Christopher Cherniak’s phrase (1991) for explanations of neural function that

defy neuroanatomical constraints.

Simply naming categorical representations is not sufficient to elevate them to symbols,

because symbols are considered to have systematicity and compositionality: They are

assigned meaning only as part of a system and are capable of being composed into more

complex symbolic structures, respectively. Harnad argues that compositionality is achieved

merely by stringing categories together into “propositions about further category me

ship relations,” and that this is sufficient to form systems of meaning. Therefore

symbol-grounding problem dissipates through a bottom-up process of gradual abstr

Harnad acknowledges one major difficulty with his account, namely that the me

nisms for producing categorical representations are largely unknown. A far greater pr

lurks—that the structures for storing and manipulating symbols in the brain are comp

unknown, that no symbol has yet been identified in any biological neural network—

Harnad requests that this be overlooked for now. In addition to these two obvious obs

Harnad’s account has further confused the relation between representation, symb

information. Information makes its appearance in a cognitive system not as symbol,

iconic representation. The bottom-up process of symbol-grounding does not produce

mation; rather, it strips it away. Thus categorical representations are developed by ig

all information except that which pertains to invariant features. Moving to symbols c

pounds this process of sensory deprivation, for symbols need make reference only

few invariant features relevant to the proposition in which they appear. Understandin
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proposition ‘The horse is lame’ does not require the full informational content that id

fying an animal as a horse does, since in the former case we may ignore the featu

distinguish a horse from a zebra. We are merely given that whatever we are talking

is indeed a horse. The invariant features that distinguish horses from other animals

be thought to be implicit in the proposition, but then what is explicit in iconic represe

tions is implicit in categorical ones as well. But even this is unnecessary. One could s

know that a horse is a quadrupedal animal, and thus know what it means for a hors

lame, without being able to identify a horse. Symbols are thus two steps removed fro

information the senses provide. That might be seen as a recasting of information

restricting of information, or information about information. We are left to guess.

What is missing from Harnad’s and the symbolic account is not so much how cat

ical representations are formed, but what is the relation between information in the ph

signal and the iconic representation which is an ‘analog’ of it. Harnad contends th

treatment of iconic representations is free of homunculi, but that leaves us guessing 

calls them representations. If they are simply the transduction of one signal into an

then every such event in nature is a representation. The energy transferred to a rock

when a sledge hammer strikes it might then be thought of as a representation. Ha

examples suggest that he means some sort of mental imagery. An icon is not mer

transduction of an external signal by the senses—it is an ‘image’ derived from this 

duction. But images have ‘aboutness,’ they are ‘of’ objects in the world, and are not m

caused by objects in the world.

Cognitive scientists typically view the ‘aboutness’ of representations as a functi

their mapping to features in the world. Hence, Harnad uses the term ‘analog’ to de
33



 turn

relied

mind/

. Who

 world

gs and

 paper.

e.
icons. Each icon has its own mapping, which is independent of the mapping of other icons;

if it is not, then Harnad has not established the base level he wishes for his bottom-up

approach. Remember, systematicity is to arise out of compositionality, and the latter is

made possible by the simple nature of icons. What is lacking is an account of how this map-

ping inheres in the representation. To solve this problem, the notion of information has been

used as a magic quantity, inhering in both external signals and representations alike. The

passing of information from the external signal to the representation establishes the map-

ping. But cognitive science has not given us an account of what this magic property is, nor

how it is passed. Assuming the mapping to be inherent in the representation is to drive the

homunculus back into the machine. I will argue in later chapters that the only way to drive

it out is to abandon the notion of representation as abstract mappings and instead accept

systematicity at even the lowest levels. The challenge then is to develop an account of how

these low level ‘representations’ arise without recourse to compositionality. But first I

to the difficulties facing the spartan account of information that cognitive science has 

upon.

1.7 Problems with the Information-Processing Model of 
Mind

Regardless of the problems with cognitive science’s methodology, denying that the 

brain is an information processor will undoubtedly strike the reader as preposterous

would deny that humans gather, communicate, and discover information about their

and themselves? We create external representations of the world, such as drawin

maps, so surely we have internal representations that we are merely committing to

To reject this is to endorse behaviorism, an almost universally undesirable alternativ
34



John Searle has argued that there is no information inherent in the physics of the brain

(Searle 1992). The level of phenomena investigated by physics is but one level that we

could look at for information processing. Searle does not deny that humans do indeed pro-

cess information, but how this would come about is left as a mystery, since Searle contends

it cannot be found in the brute facts of the brain’s biology. We are left with a series of

choices as to where information might arise:

1. The sub-neuronal level: Might information arise at the level of mitochondria or 

other constituents of the neuron?

2. The neuronal level: Is the action potential of a neuron a transformation of informa-

tion? Is it computation?

3. The neural population/map level: Are neural maps representations of the external 

world?

4. The gross structure level: Does representation arise within, for example, the hippoc-

ampus as a whole?

5. The whole brain level: Is the activity of a portion of the brain a representation only 

within the context of the whole brain?

6. The embodied brain level: Must the context be extended to the brain+body for there 

to be representation?

7. The environmental level: Must the embodied brain be considered in its environ-

mental context for there to be representation?

Alternative characterizations of the possible levels of the mind/brain have, of course,

been proposed. One popular characterization is that proposed by Simon and Newell (New-
35



ell 1982) in which they distinguish between the physical architecture level, the program

level, and the knowledge level.   Simon and Newell’s hierarchy, however, is inadequate for

asking the question of what level information arises at, because it presupposes which level

it is. 

The level of physical architecture is simply the structured guts of the machine, whether

this is the connectivity of the brain’s neural nets or the computer’s internal configuration.

Information does not appear at this level, because there is nothing more to it than how the

physical parts fit together. What the physical architecture does is run a program, and it is at

the program level that information and computation occur. Though the physical parts are

carrying out this computation, the symbols that correspond to information are properly at

the level of the program. The knowledge level is that which is generally described by folk

psychology-full-blown intentional systems reasoning about their environment. So Simon

and Newell place the origin of information at the level of the program, though it occurs also

at the knowledge level. For this to be true about humans, one has to assume that there is a

corresponding program level in the human mind/brain. It means that the mind/brain is a

computer, following computational algorithms. I will soon investigate reasons to believe

that the mind is not software on the brain. Because the Simon and Newell hierarchy does

not provide a non-question-begging framework to ask at what level information arises, and

the hierarchy I have proposed does not make similar assumptions about the existence of

mind/brain programs, this seven-level stratification will serve in the meanwhile for inves-

tigating the origin of information.

Roger Penrose (1989) has made a case for assigning the origins of consciousness to the

subneuronal level, arguing that microtubules, in displaying quantum-level effects, could
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hold the key to the mystery of consciousness. The response to one who would put the origin

of information at the subneuronal level is the same as that to Penrose. Microtubules, and

similar constituents of cells, are common to cells throughout the body. Why then don’t these

cells and cell structures (like the foot) demonstrate consciousness? Similarly, why wouldn’t

they be considered information-processing systems? 

The neuronal level is a more likely candidate for the origin of information, though this

possibility has fallen more and more out of favor (Churchland and Sejnowski 1992). While

connectionist models view the neuron as a computational element, taking inputs and trans-

forming them according to (in most cases) a nonlinear squashing function into output,

information as representation appears only in distributed form. A representation is a com-

bination of activity of neurons across the net, not the input-output mapping of a single neu-

ron. Still, research into the visual cortex has revealed single cells, known as simple cells,

that respond to the presentation of an edge of a certain angle at a certain position (e.g., the

center of the simple cells’ receptive field), as well as complex cells which respond to an

edge of a particular angle regardless of its position (Carlson 1994, 158). Also, many com-

plex cells increase their rate of firing when the edge moves perpendicular to its angle of ori-

entation, and so are thought to act as motion detectors (Ibid). It would seem plausible to

hold that simple and complex cells represent edges of specific orientations. Proponents of

the view that representations are compositional, that is, complex representations are com-

posed out of simpler representations, certainly find this research in line with their predic-

tions. Given connectionism’s well-known neural implausibility, research of this type ought

to be heeded more readily than the connectionist’s contentions about the distributed nature

of representation.
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Yet, connectionism’s insistence on a holistic approach to neural systems, rather than the

traditional engineering approach of decomposing systems to understand constituent com-

ponents (in this case, representations), sidesteps the initial objection that can be raised to

neuronal level accounts of representation. If the neuron’s activity is in fact a case of repre-

sentation, who or what is ’viewing’ the representation? The neuron itself is an unlikely

homunculus, too dumb a component to understand what it is representing. Representations

at the level of the neuron can only be representations in virtue of being part of a system that

interprets them, that understands the relation between the spiking patterns and the world.

For connectionist systems, representations emerge at the level of the network. It is not a

question of what interprets the activity of a neuron, because the meaning of the neuron’s

activity is provided by the system’s meaningful behavior, assuming it has such behavior.

Unfortunately, connectionism’s solution to the neuronal-level homunculus problem is

only a temporary dodge. That connectionist systems require a human interpreter will be

demonstrated in the following sections, so I will not dwell immediately on the details of

why connectionism fails. For the present purpose of estimating the level at which represen-

tations appear, the ability to collapse artificial neural networks into the function that is

being approximated shows that they differ little from explanations of single cell behavior.

Whether a researcher interprets an artificial neural network as parsing English or recogniz-

ing written words does not change its fundamental nature. Artificial neural networks are

needed not so much because they simulate how the brain works-they don’t-but because

researchers don’t know exactly how the brain does what it does, and a universal function

approximator allows simulation without explicit knowledge of what the mechanism at hand

is. If the exact form of the function being computed by a cell is known-assuming that is
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what a cell is doing-the artificial neural network is simply not needed. Artificial neural net-

works simulate only the apparent computational work of a real neural system. They approx-

imate its behavior-and nothing more. That they need an interpreter is a direct implication

of this fact, as they are not embedded in real neural systems. An artificial neural network

that approximates a Gabor transform or Difference of Gaussians is only simulating a cell

in the visual system in the mind of the researcher carrying out the simulation.

Connectionist systems are level-4 systems, although they are not truly neural maps or

populations. Perhaps true neural populations, or maybe level-5 systems (gross neural struc-

tures), can do the work of the homunculus. This would seem to be the implication of Daniel

Dennett’s Multiple Drafts theory (1991). Dennett argues that we should replace the well-

worn image of the mind/brain as a Cartesian Theater-a place where representations are put

on display for some supposed viewer-with the idea of the mind as either a collection of

competing and cooperating demons or a series of multiple drafts of representations. (The

correlation between this theory and Edelman’s is superficially striking. More will be said

on this later.) Dennett’s theory resides at the level of cognitive psychology, with little being

said about how the brain might realize such a schema. He has strayed very little from his

original argument about how to get rid of the homunculus problem, which is that as one

analyzes the mind/brain at finer and finer levels of granularity, the systems become dumber

and dumber, until finally the homunculus is gone. But the problem of the nature of infor-

mation does not disappear by pushing it farther down. In fact, it becomes more and more

insoluble.

It is tempting to view the release of neurotransmitters as a form of information transfer,

and to consider this the most basic level at which information is passed. But what is it about
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neurotransmitters that makes them vehicles for information? Is it that they are released in

response to environmental stimuli? Not all neurotransmitter release occurs because of envi-

ronmental stimuli. Perhaps neurotransmitters are bearers of information because they are

part of a chain of information transfer that begins with either external or internal stimuli.

Thus, either photons striking the retina or hormones indicating states of the body could be

the initial source of information, passed on by neurons signaling to one another via neu-

rotransmitter release. So the initial information comes from a non-cognitive source.

At this point, the cognitive science de facto position that information is akin to repre-

sentation, or serves as the content of representation, or is grounded-symbols, utterly

founders. Semantic information of this sort is simply not carried by physical signals such

as photon emission. Otherwise we would have to concede that rocks not only carry seman-

tic information, they are information processors because there are transitions between their

information-bearing states (in other words, any change in a rock’s current state would be

information-processing). Unfortunately, some cognitive scientists (McCarthy 1979) see

nothing wrong with saying that objects such as thermostats have representations. 

Even adopting such an absurd position would not save cognitive science’s account of

information. The kind and amount of semantic information being carried by a signal would

be indeterminate, and so could not serve an account of the role information plays in cogni-

tion. The rings of trees presumably contain information about the causal forces that resulted

in their individual patterns, but, as I have pointed out, there are two obstacles to this view.

The amount of information that would have to be considered present is nearly infinite. Yet

the vast majority of this information would not, and could not, have any causal efficacy.

Information can therefore be present in a signal yet have no effect (and this undermines
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entirely Dretske’s position). So in what sense is it there? Second, it will often be in principle

impossible to determine the type of information present. This is due to what might be called

semantic equivocation. This happens when two or more causal sources produce indistin-

guishable effects. One answer to this is to consider tree rings as carrying information about

all their possible causes. But this is to break the connection between information and the

way the world actually is, as well as to multiply the inefficacious information carried by a

signal.

If there ever was a ghost-in-the-machine explanation of cognition, it is the information-

processing paradigm. Harnad is correct to point out that cognitivism has allowed mentalism

in the backdoor, but he is wrong to think that he can get rid of it and still be a cognitivist.

Granted that the notion of iconic representation plays a useful role in cognitive psychology,

yet it is a bit like doing population genetics without molecular genetics to back it up:

explaining a surface phenomenon by reference to entities of which we have no idea if they

are real.

The question is not how the homunculus disappears, as it is generally agreed that mol-

ecules are not intelligent. The question is how it appears. Dennett has replaced the homun-

culus known as the unity of consciousness with slightly lower-level homunculi that are not

much dumber. In a very important sense, Dennett has not even gotten rid of the Central

Meaner, the homunculus that does all of the understanding for the neural system and thus

provides the appearance of a unity of consciousness. He has merely replaced it with a Cen-

tral Arbitrator. Because output devices on humans (i.e., mouths, hands, etc.) are in limited

supply, not all of the demons can access them at once. Just as with a computer, a system of

priority and arbitration must be enforced. Humans impose their priorities on the computer
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as its priority system. What in the human mind/brain carries out this function for the mul-

tiple competing drafts? It is not a random system, as our trains of thought do have coher-

ence. The Central Arbitrator might be considered dumber than the Central Meaner by virtue

of imputing the task of understanding to the individual demons. It might simply be a selec-

tion system that allows the ’strongest’ demon to express itself. But this means that all Den-

nett has succeeded in doing is multiplying the Central Meaner. His effort is like that of the

Sorcerer’s Apprentice, furiously whacking at the unyielding broom, only to find that the

shards have taken on a life of their own and behave in the same manner as the original.

1.8 Theories of Syntactic Information Do Not Provide a 
Basis for a Theory of Semantic Information

Cognitive scientists regularly speak of sentences, utterances, and signals ‘carrying in

tion,’ assuming not only that the notion of ‘information’ is well-defined, but also that

idea of something ‘carrying’ information is well-understood. Loosely, what is mean

‘information’ is some set of facts about the world (or at a more basic level, some set of indi-

cators of the state of the world). Thus, what is meant by information in this context is

signal that bears content, in contrast to Shannon’s notion of information as a measure

novelty of signals regardless of their content. When pressed for a theory of semantic

mation, however, few cognitive scientists undertake to sketch even preliminary detail

those who do have generally offered some permutation of Shannon’s theory of syn

information. The efforts to recast Shannon’s original theory into an account of the n

of semantic information generally identify the semanticity of a signal with one of t

aspects: its causal connections, its reliability, or the structural relations between send

receiver of the signal. In this chapter, I have examined one representative of each o
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approaches: Dretske, Sayre, and the molecular Darwinists respectively. Each representa-

tive fails to explain the origin and nature of semantic information, though each for a differ-

ent reason. 

Dretske’s causal account places too stringent of a restriction on what signals qua

carrying information about the world, requiring a perfect correlation between signa

what the signal is about. Even with this restriction, the carrying capacity of any given s

is still theoretically infinite, carrying information about everything in its causal chain. W

makes the signal about a particular event and not about all of the events normally c

connected with it is not explained. At best, Dretske explains by virtue of what a signa

ries’ information, but not what that information is.

Sayre’s use of the concept of Shannon mutual information as a measure of reliab

explain the semanticity of signals falters on the very notion of the reliability of a signal.

might define the reliability of a signal as its faithfulness in capturing relations betw

objects and events in the world, but then one would be begging the question in de

semanticity in terms of it. Reliability is also a notoriously difficult notion to tease out w

applied to sensory organs that map from a 3D world to 1- or 2D signals.

The molecular Darwinist approach is simply to cast the syntactic aspects of signa

biological terms as relations between biological structures. What makes these re

semantic rather than syntactic is unclear. What is also unclear is why semantic inform

is restricted to biological structures.

The failure to provide a theory of semantic information is of no little consequenc

cognitive science: it entails the inability to develop a theory of cognition. Dennet

argued that intelligence arises through the conjunction of dumb building blocks
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smarter and smarter components. Yet, if one cannot explain how the dumb building blocks

can represent anything, then conjoining them will do little toward explaining more sophis-

ticated representations. Without a theory semantic information, one cannot explain the

activity of dumb neurons in terms of their transferring information-about-the-world

between one another.

In the next chapter, I turn to how information processing plays a role in the development

of computational theories of mind. What will be argued is that computationalism inherits

the indeterminacy of the information-processing perspective, making it impossible to tell

when a system is actually doing computation. I will also investigate dynamical systems

challenges to computationalism, and show that the crux of the disagreement is whether a

system is doing information processing at levels lower than that of the global explanation

of a systems function, which corresponds in cognitive systems to folk psychological expla-

nations. Computationalism will be shown to be at best a method of describing simple sys-

tems, implying nothing about the nature of the system.
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Chapter 2 The Failure of 
Computationalism and the 
Computer Metaphor to 
Explain the Nature of Mind

2.1 Information, Representation, and the Computer 
Metaphor

If one were to summarize the disparate efforts of cognitive scientists to understand cogni-

tion and perception, it would be in the form of the question: How does the mind/brain rep-

resent the world? And even if the notion of information remains ambiguous, we cannot

level a similar charge that cognitive scientists have not attempted to clarify what represen-

tations are. Cognitive science has inherited more than two thousand years of philosophical

thought upon the subject of representation, and in its brief history has surpassed the prior

millennia in offering detailed models of representational systems. Cognitive scientists even

have an account of how transitions between representations occur, computationalism, and

a unifying metaphor for the mind, that of the computer (with all the usual caveats that there

are dissenters to this view). Yet there remains a gaping hole in the computational/represen-

tational perspective. This gap is the role of information in representations and, by exten-

sion, computations. It is only by virtue of carrying information that mental events are

representations, and only by virtue of processing information that computations are plausi-

ble models of mental processes. Models in cognitive science generally require us to assume

that the mental structures they posit are indeed representations. Such an assumption merely
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covers up what is truly at issue, namely how information turns brain events to representa-

tions and computations.

2.1.1 The Nature of Representations

So what is meant when a cognitive scientist says X is a representation? A representation is

generally regarded as an encoding of a domain such that there exists a correspondence

between the code and the subject of coding that can be deciphered in a nonarbitrary manner.

One straightforward way of developing a representation is to draw a picture of an object,

keeping all relevant aspects of the picture in the same relation as the object’s properties.

What is relevant is determined by the goal of the representer, since all representation is a

reduction in dimensionality of the feature space of an object. For example, drawings and

photographs reduce 3-D objects to 2-D renderings. 

Neuroscientists often point to the motor and sensory homunculi as examples of rela-

tively straightforward representations—the activity patterns of the primary motor and

sory cortices in relation to what part of the body is stimulated appear (to the observ

form body maps or homunculi. The motor and sensory homunculi illustrate not onl

dimensionality reduction inherent in representations—the number of neurons in the 

and sensory cortices is far less than the number of objects they represent—but also 

ture distortion that is common to representations. Although hands and lips consti

smaller fraction of the human body than do legs and arms, the homunculi have mor

rons associated with the former two than with the latter two. Representations, by ha

focus on a reduced feature set, distort some of the relations between features o
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objects. In the case of the motor and sensory homunculi, the relation of surface area and

volume between lips and legs is distorted. 

Cognitive psychology is essentially the study of representations as defined above. The

debate between proponents of prototype and exemplar theories of memory is a case in

point, as what is at stake is not whether the mind constructs representations, but whether

categories are representations as statistical means, as advocated in prototype theory (Rosch

1977), or collections of representations of token members of categories, as understood in

exemplar theory (Nosofsky 1986).

This is not to say that some cognitive scientists would not object to this definition of

representation, but that is because they take a narrower view of representation for the sake

of their particular research within cognitive science. Thus, Fodor contends:

The full-blown Representational Theory of Mind (hereinafter RTM...) purports to
explain how there could be states that have the semantical and causal properties that
propositional attitudes are commonsensically supposed to have. In effect, RTM pro-
poses an account of what the propositional attitudes are. So, the further you are from
Realism about propositional attitudes, the dimmer the view of RTM that you are likely
to take. (Fodor 1993, 273)

Fodor identifies representations with propositional attitudes because he is a Realist about

the latter. The role that propositional attitudes play, however, is subsumed under the defi-

nition of representation given above. In rejecting the Representational Theory of Mind,

authors such as Stich are not rejecting the notion that the mind is a representation machine.

Rather, they reject the notion that the representations the mind uses are in fact what folk

psychology purports, namely propositional attitudes. Stich’s Syntactic Theory of Mind

(1983) contends that the mind manipulates symbols, which themselves represent items in

the world, but these symbols do not have the semantic and causal properties of proposi-
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tional attitudes. Allen Newell has proposed a general law to capture the commonalities

between kinds of representations:

This is the essence of representation-to be able to go from something to something else
by a different path when the originals are not available. We can cast this as a general
law:
The representation law:
decode[encode(T)(encode(X))] = T(X)
where X is the original external situation and T is the external transformation. (Newell
1990, 59)

2.1.2 How Information Serves as the Notion of Representation for the 
Computer Metaphor

Regardless of the specific form of the representational theory, cognitive scientists have

implicitly defined representation-of-the-world to be synonymous with information-about-

the-world. What is essential to being a representation is not its syntactic form, but its

semantic relation to the represented domain. The representation need not be simple as in

the cited examples. It can involve complicated mathematical transformations of the repre-

sented domain, so long as the brain is capable of carrying out the necessary computations.

But a series of constraints on the reliability, storability, and accessibility of a representation

leads to more specific notions of what the mind/brain is. In particular, they lead to a com-

puter model of the mind. No matter how sophisticated a calculator the brain might be, if

information degrades beyond a certain point, correspondences to the initial domain will be

lost. Since humans have memories reliable enough to get them through daily life, as well

as having assisted them through their evolutionary past, memory must be stored, computa-

tionalists reason, in a manner similar to that of the extremely reliable computer, give or take

a little noise. Specific memories have specific locations (or, if you are a Connectionist, dis-

tributed locations, but a collective location nonetheless). Memory recall must also be sim-
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ilar to that of a computer, namely accessing the appropriate location or address. Cognitive

scientists look upon recall as retrieval. Putting information in its appropriate place is also

likened to a computer’s input mechanisms and data pathways.

Even the evolution of the mind/brain is compared to the design and construction of a

computer. Explaining the posited innate structures is done in terms of a computer’s internal

code and compilers: just as the computer scientist creates the correspondence between

machine code and primitive actions in the computer, which then becomes part of the com-

puter’s inherent behavior, so too evolution builds in certain codes that run the behaviors of

living organisms. Jerry Fodor (1975) has used this analogy to deflect criticism that his Lan-

guage of Thought thesis implies an infinite regress of mental languages. Just as the com-

puter does not suffer such a regress, because the programmer establishes the underlying

correspondence between the inherent code and the behavior of the machine, so evolution

performs that service in the brain. Evolution is a deus ex machina in the role of programmer

of the machine.

The influence of the information-processing formula is greater than merely suggesting

metaphors. If the mind operates on information gathered about the world, it cannot assume

that that information is always correct. It must have some way of testing that information,

of reversing the transformation from stimulus to stored data, thus transforming that data to

probing behavior. These transformations can only be explained in terms of computations

on data, for while folk psychology may be able to tell us why someone did something, it

cannot tell us how that process occurred in the mind/brain. That someone has a belief tells

little about how it influences the person’s behavior. Computationalism, on the other hand,

does provide the explanation of how states in the mind transition to overt behaviors, or
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other mental states. According to Strong-AI computationalists, the mind/brain is not merely

like a computer; it is a computer (though an analog computer, not a digital one). Computa-

tionalists of all stripes also accept Church’s thesis as true.1 These two assumptions together

imply that anything the mind/brain can do, a Turing-machine-equivalent computer can

achieve. Computers can therefore be programmed to be mind/brains. Strong AI, the claim

that some computers not only mimic minds, but are in fact minds, is a direct descendant of

the information-processing perspective (weak AI merely claims that minds can be “

eled”). Strong AI computationalism, as the scientific expression of the information

cessing model of the mind, is often expressed as an algorithmic model of mind. Th

lead to confusion about what it means for the mind/brain to use algorithms, a con

exploited masterfully by one of its principal proponents, Daniel Dennett. 

2.2 Algorithms and the Computer Metaphor

2.2.1 Dennett's Mistaken Concept of ‘Algorithm’

Cognitive scientists do not view the mind as merely a collection of representations. These

representations must in some way produce meaningful behaviors. The processes by which

representations are acquired, transformed, stored, and acted upon are algorithms that have

somehow been coded in the mind. According to Dennett, algorithms have the following

properties:

(1) substrate neutrality:... The power of the procedure is due to its logical structure, not
the causal powers of the materials used in the instantiation, just so long as those causal
powers permit the prescribed steps to be followed exactly.

1.  Church’s thesis is that the classes of functions computed by recursive functions, Turing machines, Post 
production systems, etc., are the same. Each of these systems can compute any of the computable functions, 
the largest class of functions. Therefore, if something is computable, it is Turing-Machine computable.
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(2) underlying mindlessness: Although the overall design of the procedure may be bril-
liant, or yield brilliant results, each constituent step, as well as the transition between
steps, is utterly simple. How simple? Simple enough for a dutiful idiot to perform-or for
a straightforward mechanical device to perform.
(3) guaranteed results: Whatever it is that an algorithm does, it always does it, if it is
executed without misstep. An algorithm is a foolproof recipe (Dennett 1995, 50-51).

So an algorithm is a formal process for producing some result, or at least that tends to pro-

duce a particular result, regardless of how “interesting” that result is (Dennett 1995, 

There are a number of problems with Dennett's description of algorithms. First

unclear what is meant by the phrase “[t]he power of the procedure is due to its logical

ture, not the causal powers of the materials used in the instantiation.” Is Dennett sugg

the causal power of an algorithm is due to its logical structure and not the causal pow

what carries out the algorithm, or is there some other notion of power? When som

refers to the power of an algorithm, they generally are referring to its usefulness o

ciency for solving a problem relative to other algorithms for that problem. Algorithms

tools. To argue that an algorithm has the power to do something by virtue of its lo

structure is akin to arguing that a hammer has the power to hammer nails by virtue

physical structure. All algorithms are by definition useful for something, so either De

is merely defining power in terms of property (3), or as a subject-relative notion in the 

of one algorithm more efficiently achieving a person’s desired results than another

ambiguity in Dennett's use of the term ‘power’ is just what disturbs Searle about info

tion-processing theories when he notes that syntax does not have causal powers

1992). 

Second, what does it mean for there to be a misstep in an algorithmic process in n

For example, consider what Dennett (1995) and Dawkins (1976) call “copying error

the replication of DNA. When DNA replicates, there is a high probability that the res
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identical to the original. Is replication an algorithm for producing identical copies, with

nonidentical copies counting as missteps? Or is it an algorithm for introducing some vari-

ation into a population of genes? Or is it both, in which case, what counts as a misstep?

What is the fact of the matter here? Evolution by natural selection requires some, but not

too much, variation to act upon. Taken in the wider context of the process of natural selec-

tion, genetic changes introduced in replication are not necessarily errors. Yet Dennett con-

stantly refers to them as “copying errors.” Because he does not resolve this ambigu

definition of algorithm is not adequate for determining whether a natural process is an

rithm. Dennett would argue that because replication has been selected for, there is 

in which it has a purpose, and therefore we can identify when it backfires. But Darw

just-so stories that replication is introducing not error but needed variations can a

invoked. A process that is optimal when 70% of one outcome is produced and 30%

different outcome is produced is not making a misstep when an outcome of 30% like

is produced. 

Finally, just what in nature doesn't qualify as an algorithm? According to Dennett,

cesses need not have a guaranteed result to be counted as algorithms; rather, a gua

a tendency (the same thing as a tendency?) toward a particular result is all that is re

to fulfill property (3). What apparently doesn't qualify as an algorithm is a purely ran

process, such as Brownian movement. Or does it? Might it be an algorithm that guar

the random motion of molecules? Presumably, the causes of Brownian movement a

“for” the production of random motion in the sense that they were not selected fo

effect. Yet, Dennett does not require that a process be selected for in order for it to

algorithm. Further, a random number generator is an algorithm for producing random
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bers (actually pseudo-random numbers). Why isn’t the logical structure of the causal pro-

cesses involved in Brownian movement an algorithm? Dennett sees no difficulty in the idea

of an algorithm making use of randomness:

Because most mathematical discussions of algorithms focus on their guaranteed or
mathematically provable powers, people sometimes make the elementary mistake of
thinking that a process that makes use of chance or randomness is not an algorithm. But
even long division makes good use of randomness! (Dennett 1995, 52)

So it would seem that a process could make use of randomness as well as producing it,

and still qualify as an algorithm. However, Dennett is wrong in his claim that long division

makes good use of randomness. Because an algorithm is neutral toward the choice of inputs

at a particular stage does not mean that it is exploiting randomness. A set rule for which

number to choose when attempting to divide would work just as well for long division

is neither required nor proscribed. One can choose randomly, but this random choice

essential to the algorithm. It does not effect the algorithm’s output. As we will see, Ede

and others argue that the stochastic nature of neural patterns is essential to their func

It is not merely that neurons make good use of randomness, but that this random

essential to their output behavior.

2.2.2 The Concept of ‘Algorithm’ as Found in Computer Science

It is not objectionable if Dennett simply wants to carve out his own notion of algorithms,

but it needs to be pointed out that his definition does not correspond to that found in algo-

rithmic information theory and computation theory. This is important to note when consid-

ering critiques of computationalism, such as Edelman’s, when they make claims concerning

the applicability of the notion of algorithm to the mind/brain. An example of what is con-

sidered an algorithm in algorithmic information theory is as follows:
53



pha-

brain

ture, it

en-

ss] is
avily
hat his
Edel-
rstand-

to say

dency

se. But

rithm

puters

n is an

‘algo-

then

iffer-

 algo-
A Turing machine can carry out the most complicated calculations with the numerical
information supplied, as long as these calculations consist of finite series of simple
steps, of which each one follows on from the previous one in a purely mechanical way-
that is, with no intellectual comprehension and no random decisions. A program that
consists of instructions of this kind is called an algorithm. (Küppers 1990, 93) (em
sis added)

So when Edelman criticizes functionalism for its insistence on explaining the mind/

in terms of algorithmic processes, when in fact neural functions are stochastic in na

is undoubtedly this notion of algorithm to which Edelman is referring. This is not how D

nett reads Edelman, however:

Someone who does not understand this [that algorithms can involve randomne
Gerald Edelman, whose “neural Darwinism” simulations are both parallel and he
stochastic (involving randomness), a fact he often cites, mistakenly, as evidence t
models are not algorithms, and that he himself is not engaged in “strong AI” (e.g., 
man 1992). He is; his protestations to the contrary betray an elementary misunde
ing of computers . . . (Dennett 1995, 444)

Dennett has expanded the definition of algorithm to a degree where it means little 

that a process falls under its rubric. Digestion is multiply realizable, guarantees a ten

to a result, and is simple in its mechanisms-and so is an algorithm in Dennett's sen

computers can't digest. Edelman is at no risk in accepting Dennett's definition of algo

and his contention that the brain employs algorithms. This does not imply that com

can realize the same algorithms; they cannot realize digestion, even though digestio

algorithmic process in Dennett's sense of ‘algorithmic’. Edelman argues that the 

rithms’ the brain employs are not information-processing algorithms. If they were, 

computers could employ the same algorithms.

Dennett and the theorists of algorithmic information mean something radically d

ent from one another when they use the term algorithm. A more common notion of
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rithm in computer science can be found in a popular instruction text on the subject. Cormen,

Leiserson and Rivest (1990) offer the following definition:

an algorithm is any well-defined computational procedure that takes some value, or set
of values, as input and produces some value, or set of values, as output. An algorithm
is thus a sequence of computational steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational
problem. The statement of the problem specifies in general terms the desired input/
output relationship. The algorithm describes a specific computational procedure for
achieving that input/output relationship. (Cormen, Leiserson, and Rivest 1992, 1)

Here, an algorithm is not merely a substrate neutral method for doing something; rather, it

is a procedure specifically for computing output values from input values. This is always

what it means for a Turing Machine to be implementing an algorithm. A distinction there-

fore must be made between a computer’s algorithm and, say, a bucket brigade. Organizing

and running a bucket brigade is an algorithm, in Dennett’s sense, for putting out fires. It

doesn’t matter if the brigade consists of people or robotic arms, if the buckets are made of

plastic or metal, or if the substance smothering the fire is water or sand. It is a simple pro-

cedure, normally carried out by intelligent agents but not requiring them, and is guaranteed

to tend to extinguish fires (it won’t always succeed, but smothering a fire is going to lessen

it). But the bucket brigade is not computing values, and as such is not an algorithm in the

computer science sense. It is the computer science sense, especially the algorithmic infor-

mation theory sense, that Edelman (1992) and Searle (1992) are attacking when they say

that the brain does not use algorithms.

We could carry our abstraction of the bucket brigade system one step further and intro-

duce simulated bucket-brigading. This might be a method of overwriting the contents of

computer memory in one address with the contents at another address via copying through

intermediate addresses. It might be used to wipe out sections of memory containing a virus,
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thereby eliminating a spreading threat to the computer. While inefficient, it is nonetheless

an effective algorithm, and it retains the logical structure of the real bucket brigade. Bucket-

brigading is therefore a Dennett-style algorithm. Simulated bucket-brigading, however,

does not produce the same result as its real world inspiration. It does not put out fires.

This distinction between algorithms generally and information processing algorithms is

essential to the thesis proposed here. Dennett might tighten his definition of substrate neu-

trality to mean absolute substrate neutrality, but this would exclude informational processes

from the category of algorithm. What logical structure is absolutely substrate neutral? So

the path Dennett wishes to lead us down, that of 

1. brain processes are algorithms,

2. computers can instantiate algorithms,

3. therefore computers can instantiate the same algorithms as brain processes,

is a mere equivocation. What Edelman has done is put his finger on what bothers Searle

about cognitive science, a point Searle has been unable to make without sounding like he

is proposing magic: brain processes involve causal powers not (currently) available in com-

puters. The algorithms (Dennett’s notion) the brain employs are substrate neutral, but not

absolutely substrate neutral. Searle thinks they can never be implemented in a computer,

Edelman is working to do so, while Dennett has skirted the issue by equivocating on the

term algorithm. Dennett’s path only works if you assume that the brain’s algorithms are

information-processing, with information processing understood as symbol processing.

Since Edelman and Searle dispute the information processing nature of the brain’s algo-
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table’
rithms, Dennett cannot win the argument by merely pointing out that the brain invokes

algorithms. 

2.3 An Information-Processing Model of Mind: 
Computationalism and its Varieties

Dennett’s mistake is a common one. It is largely due to cognitive scientists harboring the

unquestioned assumption that the mind/brain is an information processor. This assumption

takes the form in cognitive science of computationalism, albeit a specific type of computa-

tionalism. In this section, we will examine the varieties of computationalism, especially

information-processing computationalism.

While it is important to point out that computationalism-the theory that the states of

mind/brains are correctly understood as computable functions-is not strictly equivalent to

the information processing perspective, the vast majority of computationalist accounts are

also information-processing accounts. Folk psychology, as an information-processing

model, is a notable exception to the otherwise complete coextension between computation-

alism and the information processing view. Mainstream computationalism, however, is the

scientific expression of the information-processing perspective.

2.3.1 Mainstream Computationalism

So what is computation, and what does it mean to have a computationalist perspective of

cognition? As was noted above, computer scientists define algorithms in terms of compu-

tation. These algorithms are therefore computational algorithms, a subspecies of algorithm

(they are also information-processing algorithms in the specialized sense of information

introduced above). This definition seems to get muddied if we then view as ‘compu
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those functions that can be evaluated by means of an algorithm, as Steven Horst does (1996,

30). A function is simply a mapping of inputs to outputs. When we talk about computable

functions, we are talking about functions that take symbols (‘values’) as inputs and pr

symbols as outputs. These functions are computable if there exists a formal proced

carrying out the mapping or transformation. Computational algorithms are those algor

that produce symbol mappings, as opposed to those algorithms that produce, sa

smotherings. 

More precisely, a computational algorithm is a procedure to produce the ordered

that define a particular function. It takes a symbolic input and produces the sym

second element of the ordered pair defining the transformation from the input dom

the output range for that input. A computational algorithm always produces the same 

for identical inputs. Thus an algorithm that produces outputs according to a probability

sity function for identical inputs is not a computational algorithm. 

A computational theory of mind is one that holds that the mind/brain produces r

sentations as symbols, and transforms these symbols into other symbols (represen

and behavior by means of computational algorithms. As Horst points out, the com

tional theory of mind has two components: the thesis that intentional states are repre

tions and the thesis that cognitive processes are computations over these sy

representations (Horst 1996, 37).
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2.3.2 Weakened Computationalism: Computationalism as the 
Computability of Cognition

William Rapaport (1998) has developed a variation of computationalism that allows for the

possibility that human minds are not engaging in computations. He draws a distinction

between the computability of a process and that process’s being a computation:

One standard kind of example is illustrated by the solar system, which, arguably,
putes Kepler's laws. However, it could also be said that it is Kepler's laws that are
putable and that describe the behavior of the solar system, yet the solar system 
compute them, i.e., the behavior of the solar system isn't a computation, even tho
behavior is computable. (Rapaport 1998, 404)

So too could the mind's functions be computable but not actual computations. If this i

Rapaport argues, then any machine that actually computed the functions carried out

mind would nonetheless be a mind.

This approach would conflate descriptions of behavior with the behavior being 

eled, except that Rapaport makes one important distinction: although computing Ke

laws does not result in a solar system’s actual behavior (no stars as physical entities a

in computer simulations, only representations of stars), simulating mental functions

indeed produce true mental functions. Simulated thought is real thought. So if the h

mind is not doing computation, as Rapaport allows, yet its behavior is describable in

of computations, why should we equate the simulation with the actual activity in this

when we cannot with the prior two? Rapaport’s answer is that simulated minds do the

things as human minds, transform symbolic input into symbolic output (where a sym

understood to be a meaningful marker). The human mind might not use computation

from input to output, but, according to Rapaport, the intermediate between input and 
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is not essential. A computer that transforms the same input to the same output as the human

mind does is thinking the same thought.

The two issues here are whether the intermediate process from input to output are irrel-

evant and whether computations can indeed produce the same output from the same input

as humans do. To tackle the first, Rapaport examines the objection from Fetzer (1998) that

computers cannot dream because dreams are not computational. For the sake of the argu-

ment, Rapaport assumes that dreams consist of random neuron firings and the interpreta-

tions that we place on these firings, though he allows that the true characterization needs to

be worked out by neuroscientists. He concludes that “insofar as our ordinary interpret

of neuron firings in non-dreamlike situations are computable, so are dreams” (Rap

1998, 407). But if we suppose that dreams are what Rapaport suggests they are, 

must come to an opposite conclusion. A computational implementation of dreams 

not only produce the interpretation, but also the material for interpretation: the ran

neuron firing. Random patterns, however, cannot be produced computationally, a

argued earlier concerning Dennett’s claim that algorithms can “use” randomness. Ra

would have to argue that the pattern of neuron firing is just input to what really const

the dream, the interpretation, just as a random pattern of lights can be the input to 

puter vision system, but this would contradict psychophysiological research that us

random or chaotic nature of the neuron firings to explain the “bizarreness” of dreams 

son and Stickgold 1995). The random neuron firings also differ from random light pa

in that they are internal and supposedly representational. The input to whatever do

interpretation is not a set of meaningless signals, but rather a set of associations. 
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amount of the neuronal activity that takes place during REM sleep is in the visual associa-

tion cortex (Madsen et al. 1991).

Perhaps dreams are indeed a bad example. A computer that could think but not dream

would still qualify as a cognitive agent. But the case of dreams raises our two important

questions: Can a computation always get from the same input to the same output as human

thought, and is the process by which output is produced from input essential to what

thought is? Rapaport answers the first question in the affirmative; the second he must

answer in the negative. So what examples other than dreams are there of thought processes

that computation cannot reproduce? As mentioned earlier, some neurobiologists hold that

randomness is essential to neuronal behavior (Edelman 1987, 1992). The theory of stochas-

tic resonance has expanded the possible roles for randomness in neurons—in pa

recovering weak signals by adding an optimal amount of noise (see Gammaitoni et a

for an overview and application to neuroscience). Computation can approximate 

behaviors, and is therefore useful for simulation, but it cannot faithfully reproduce th

More perplexing is the notion that what gets you from input to output is irrelev

Rapaport cites the analogy between getting from point A to point B and producin

output from an input in a cognitive system to illustrate how the intermediate process is

evant. The distance between A and B is both ‘drivable’ and ‘walkable’, but both dri

and walking get you to your destination. The question, however, is not whether com

can get the same answers as human minds, but whether what they are doing is thinki

analogy does nothing to sort out this question (it also raises the question of the qua

experience of thinking versus computing). Walking is not driving, and so, similarly, c

puting may not be thinking. Rapaport, however, distinguishes between ‘thinking’
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‘Thinking’, the former being what brains do, the latter what mind/brains and computer

‘Thinking’ is an abstraction of the processes of ‘thinking’, and what this abstraction 

tures can also be implemented in computers. Why does Rapaport hold this view?

Rapaport holds this view because he believes that the output of computation a

output of human thought are not only similar syntactically, but also similar semantic

For example, both a computer and a human can add 5 and 7 to yield 12. The two ou

12 are not the same merely as numerals, but they also bear meaning for the system t

duced them. And if the structure of the computational system is right, then the mean

the computer can be the same as the meaning for the human, though it need not be 

for the output to mean something to the computer. But before I examine his arguments

these claims, I will take a short detour that reveals the intuition behind them.

2.3.2.1 Why the Chinese Room Beats the Korean Professor

With his Chinese Room thought-experiment, John Searle (1980) laid bare the intuitio

both sides of the debate over the possibility of strong AI.1 As an analogy to AI systems (in

particular, natural language processing systems), Searle envisioned a room in which

locked and given only a codebook to transform slips of paper with Chinese phras

them, which are passed under the door to him, into other Chinese phrases that he

back under the door. The instructions for doing this are given to him in English, but he

self does not understand Chinese (at least prior to entering the room). Searle argues 

ther he, Searle-in-the-room, nor the system, Searle-in-the-room-plus-code

understands Chinese. If neither he nor the system understands Chinese, how can

1.  The notion that computers can be minds, and not merely simulate their behavior.
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tems, which are doing essentially the same thing when running programs for natural lan-

guage understanding, be considered to understand the languages they converse in? Searle

contends that the Chinese room is engaged purely in syntactic operations, and that syntax

is insufficient for semantics. Hence, the Chinese room, and AI systems in general, do not

qualify as truly thinking agents.

To counter this intuition, Rapaport proposes the Korean-Room argument (Rapaport

1995).1 It runs as follows:

Imagine a Korean professor of English literature at the University of Seoul who does
not understand spoken or written English but who is, nevertheless, a world authority on
Shakespeare. He has established and maintains his reputation as follows: He has only
read Shakespeare in excellent Korean translations. Based on his readings and, of
course, his intellectual acumen, he has written, in Korean, several articles on Shakes-
peare’s plays. These articles have been translated for him into English and publis
numerous, well-regarded, English-language, scholarly journals, where they hav
with great success. (Rapaport 1995, 254)

The analogy between the Chinese room and this Korean professor is not that the

understands Chinese just as the professor understands English. It is stipulated that 

fessor does not understand English; what he understands, Rapaport contends, is 

peare, and not just a Korean translation of Shakespeare. Of course, one might dispu

Part of understanding Shakespeare is understanding the language he used, and t

least partially lost in translation. Nonetheless, it can be granted that he does know

thing of Shakespeare that is not dependent on translation. Similarly, Rapaport argu

Chinese room knows something, and even though this something may not be Chinese,

natural language. If the Chinese room is capable of understanding a natural languag

can’t a computer? In fact, why can’t a computer understand any natural language?

1.  This argument was suggested to him by Albert Hanyong Yuhan
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With this thought-experiment, Rapaport has exploited a weakness in the Chinese room

that needn’t be there. By putting a thinking agent in the Chinese room, Searle has m

too easy for his opponents to subtly beg the question against him whether the room

stands anything (not necessarily Chinese). Searle-in-the-room understands English,

understands the instructions for composing new phrases. The latter is the proper an

the Korean professor’s understanding of Shakespeare. This does not imply, howev

a computer also understands a natural language, because these abilities were im

Searle as a thinking agent. And it certainly does not enable the leap that Rapaport ma

from the professor’s knowledge of Shakespeare to Searle-in-the-room’s understand

Chinese. The professor understands the meaning of ‘To be or not to be,’ regardless o

language he read it in, but the question is whether Searle-in-the-room understan

squiggles that he receives or returns. It was stipulated that Searle did not understa

nese before entering the room. When does he start understanding it? When he re

understands the English instructions for composing new squiggles? This is not e

proper analog to knowing the grammar of Chinese, since the rules are a set of look-up

that he uses by comparing shapes of squiggles, not parts of speech. Does he star

standing Chinese when he receives the first slip of paper, or after he has composed

set of squiggles in response to it? There is no reason for us to conclude that he eve

understanding Chinese. Searle-in-the-room understands what he can read, namely t

for composition, just as the Korean professor understands what he can read, Shake

What about Searle-in-the-room+book? Searle anticipates this by allowing that S

in-the-room has completely internalized the translation book (1980). Searle conclude

Searle-in-the-room still does not know Chinese. Rapaport’s counter-intuition is th
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does. How to settle this? With one further intuition: Searle-in-the-room+book cannot trans-

late from English to Chinese at all. Since it was stipulated that Searle-in-the-room knows

English, it must be because he does not know Chinese. It is not that Searle can’t tr

very well; it is that he cannot translate at all. Rapaport, however, seems to believe th

trary:

Were Searle-in-the-room, with his book, to be stranded on a desert island and forced
communicate with a Friday who only spoke Chinese, he—with the help of this bo
would be able to do it. (Rapaport 2001, 18)

An anonymous reviewer of Rapaport’s draft article (2001) pointed out that Searle w

not know what he was saying at any point, and, therefore, would not be communicatin

could not generate sentences such as ‘I am thirsty’ to express his desires. Rapapor

is that Searle could make replies just as well as he did inside the Chinese Room. Bu

to miss the point of the objection. Searle needs to make more than replies in order to com-

municate with Friday; he needs to make requests. Imagine the following scenario: Searl

is thirsty and wishes to ask Friday to get him a drink. He cannot make this request b

he cannot translate it from English (or his language of thought) into Chinese. The rea

cannot translate it is because he does not know Chinese, even with his book on han

thermore, even the claim that he can reply to Friday as well as if he were in the C

Room is false. The replies inside the Chinese Room were to a story, and the answers

in-the-room gives are correct replies to questions about the story. Searle’s actual 

and needs do not come into play when he is in the Chinese Room. When Friday asks

if he wants a drink, however, there are two valid answers, only one of which act

reflects Searle’s desire for a drink. Unfortunately, Searle cannot decide which ans

give, because he does not know what the answers mean (in fact, he does not know w
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question means, or if it is a question, only that given the utterance from Friday, he can make

two replies).

The reason Rapaport believes Searle-on-the-island could communicate with his Friday

is that he has added additional conditions to the scenario Searle describes. The instruction

book that Searle-in-the-room and Searle-on-the-island must use is one that maps Chinese

phrases to Searle-in-the-room’s internal symbols. In other words, it provides the trans

that I noted Searle-in-the-room was incapable of doing with the book Searle describe

this is to beg the question as to whether computers are capable of understanding, b

it is stipulated that Searle-in-the-room understands something, whether it be English 

own internal language. Providing a translation between Chinese and this internal lan

makes the question whether Searle-in-the-room understands Chinese moot. Of co

does (assuming, as Searle granted, that he has internalized the book). Rapaport ha

the Chinese Room argument into a question of whether a true cognitive agent can lea

nese. But we wanted to know whether a computer could be a true cognitive agent.

No doubt that given enough time and appropriate feedback (such as someone s

translations under the door), Searle-in-the-room could learn Chinese. This is s

because Searle himself is capable of learning natural languages. The question is, 

whether Searle-in-the-room would understand Chinese if he learned it as a com

would. Giving Searle-in-the-room feedback in English, or feedback that he can tra

into English, is to bootstrap off of an already given knowledge of natural languages. A

puter that learns a natural language for the first time cannot rely on such bootstra

although, as with humans when they learn natural languages for the first time, it can r

feedback on its utterances and hear examples of correct usage. To replicate a comp
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would have to give Searle-in-the-room another language, Searlese, one which is not

mapped to English, but is fully specified in its relations between its elements, i.e., one with

a complete grammar and a specification of how each element relates to another (a semantic

network, which will be more thoroughly detailed in the next section). Searle-in-the-room

fully understands this language in the sense that he knows what relations obtain between

each element, and how to put elements together into sentences. He knows, for example, that

‘squigs’ are a class of ‘squogs’. He then learns what Chinese phrases map to Searl

can formulate any sentence of Chinese in Searlese, and vice versa. And he still d

understand a word of Chinese, because he doesn’t understand Searlese except in 

itself. He can ask questions in Chinese and Searlese, but only by accident or by the p

ing of someone else who is trying to elicit a specific reaction from Searle-in-the-room

knows how to trigger it.

This is an imperfect example, because Searlese is a bit too weak. It should also 

basic operations that Searle-in-the-room can perform, although these operations a

simple computations. Searle-in-the-room would be given a set of registers in the fo

holding bins in which chips can be stacked, and he would be able to add and substra

these holding bins, as well as multiple and divide. Although Searlese is a bit weak, the

native is to allow that Searle-in-the-room’s knowledge of English is analogous to com

machine language. If English is allowed as Searlese, then we have already granted 

computer knows natural language. Searle’s goal was to give the strongest possible s

and yet show that computationalism fails. In doing so, he offered too much, althoug

still questionable whether Searle-in-the-room (or Searle-in-the-robot) of the ori

thought-experiment could learn Chinese through its experience.
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Although Rapaport’s thought-experiment fails to demonstrate that the Chinese 

understands Chinese (or any other natural language other than what Searle-in-the-

stipulated as knowing), it indicates the direction computationalism must take to est

that computers can think. Computationalists must establish that pure syntax gives 

semantics. This is exactly what Rapaport attempts to show in his theory of syntactic s

tics.

2.3.2.2 Taking Computationalism to its Logical Conclusion: Syntactic Semantics

In “Understanding understanding: syntactic semantics and computational cogn

(1995), Rapaport distinguishes between three types of semantics: internal, referenti

external semantics, the latter being what Harnad called grounding symbols. Unlike H

however, Rapaport considers external semantics only necessary for mutual unders

between cognitive systems. The reason is that he is what he calls a “representative 

(2001, 19), which is someone who denies that we have direct access to the externa

because the external world is always mediated by our representations of it, but who a

that these internal representations can be caused by external objects. So to qualify a

nitive system, or at least as one capable of natural language understanding, one mu

internal semantics.

So what fixes the internal meaning of a marker? Its location in the cognitive sys

semantic network (Rapaport 1995). And what is a semantic network? This is a little

complicated. Rapaport contends that syntax is sufficient for semantics, and bolste

claim with a pair of blueprints for how semantics can be converted into syntax, and so

ized by syntactic relations.
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The first approach to converting semantics into syntax takes as its starting point a def-

inition of semantics as the relation between markers and what those markers mean. Mean-

ings are then treated as markers themselves, and the set of markers and their meanings are

unioned. Now, the relation between markers and their meanings is one simply between

markers, and is therefore syntactic. But how do meanings become markers? The meanings

are themselves internal representations, since Rapaport denies the possibility of direct

access to objects outside of consciousness. The activated nerves that underlie the represen-

tation also serve as markers, so the relations between them are syntactic. What convinces

Rapaport that there is no direct access to the world is a set of experiments. Looking at a

light while closing one eye causes a representation slightly different from looking at the

same light with the other eye closed. These representations are also different from that

resulting from looking at the light with both eyes open. The distinctness of these represen-

tations leads Rapaport to conclude that it is always and only through representations that

we come in contact with the world, and that therefore we have no direct access.

The second path to syntactic semantics is the need to terminate the infinite regress of

semantic interpretation. The semantic domain is used to understand the syntactic, but how

is it that we understand the semantic? We could formulate a third domain to interpret the

semantic, and a fourth to interpret the third, and so on. At some point, this regress must

cease for there to be understanding, and this final domain must be understood in terms of

itself. According to Rapaport, the only way to understand a domain in terms of itself is syn-

tactically. 
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2.3.2.3 Why the Syntactic Move Does Not Work

At first glance, Rapaport appears to be advocating a form of reductionism similar to the

reduction of mental states to physical states. Semantics is simply the appropriate kind of

syntactic operations. Rapaport’s move, however, is more radical than this. He is not m

reducing semantics to syntax, but rather eliminating the former:

I understand the internal symbols of my own Mentalese language of thought syn
cally. One could say that “mental terms” don’t mean; they just are (shades of Gertrude
Stein?). More precisely, they interact: I manipulate them according to certain (no dou
unconscious) rules. (Rapaport 2001, 22)

This is precisely the move that methodological solipsists must make to address the q

of what meaning is in the context of a computational system. The answer, that there 

syntax, provides a perfect description of computational agents. Unfortunately for the 

odological solipsist, it does not describe true cognitive agents. Much of the remain

this dissertation will address how systems built on solipsistic assumptions differ from

is known about human mentation and how these differences matter to being a co

agent.

One difficulty for methodological solipsists is how to explain what makes an inte

representation a representation once semantics is eliminated. As we saw with the Chin

room, in order for markers to have meaning, there must be some way of translating

into one’s already existent system of meaning. Rapaport offers one scenario on ho

might happen given methodologically solipsistic assumptions. The nerve activation t

the visual perception of an object is bound or associated with the nerve activation th

resents the word for that object. It is with these vague terms—bound, associated, repre-

sents—that methodological solipsists get away with murder. In what sense does a 

nerve activity represent the word ‘tree’? How are sets of nerve activity bound? 
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This is not to be obtuse or ask the impossible. Granted that neuroscientists have yet to

adequately answer these questions themselves, they have, nonetheless, provided outlines of

the answers, and these outlines point away from methodological solipsism, as will be

shown in later chapters. Furthermore, Rapaport cannot complain that he is not required to

explain human cognition since he is only interested in the computability of cognition. His

claim that semantics can be converted to syntax is dependent on his theory of representa-

tion. The applicability of this theory to computers is further dependent on the validity of his

claim that however humans bind incoming signals to markers, so too can computers.

Finally, the ability of computers to learn is also dependent on this theory of how represen-

tation arises, and the ability to learn is one of the qualities that Rapaport believes a cognitive

agent must possess.

2.3.2.4 Damasio’s Theory of Time-Locked Multiregional Retroactivation as a 
Biological Model for Syntactic Semantics

Rapaport (1996) offers Damasio’s theory (1989) of time-locked multiregional retroac

tion as a plausible explanation for how the binding that (syntactically) produces sem

relations occurs. Citing Damasio’s theory as an example of how syntactic semantics

be realized in humans is an important step toward answering the question of wheth

input/output relations found in humans can be realized in computers: if the brain im

ments a semantic network along computational lines, then a computer should be ab

the same. So is Damasio’s theory a brain-analog of the computational semantic n

that Rapaport envisions to be the foundation for understanding? Damasio (1989) ha

died the waters as to where his theory stands by claiming it to be compatible with both

man and Finkel’s Theory of Neuronal Group Selection (Edelman and Finkel 1984
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Fodor and Pylyshyn’s (Fodor and Pylyshyn 1988) characterization of classical cog

architecture, the latter being somewhat similar to Rapaport’s. Edelman has since cl

how his theory stands radically opposed to the kind of cognitive architecture defend

Fodor and Pylyshyn, so it is not clear that Damasio accurately assessed the comp

of his theory with others.

Damasio’s theory is a challenge to the conventional view of the time that there is 

directional flow of information in the brain from sensory and motor systems to higher 

ciation cortices which progessively extracts features and produces finer and 

representations (Damasio 1989, 30). Damasio’s theory also challenges the idea tha

is a single site in the brain where sensory and motor information is integrated to pr

the unity of consciousness. Instead, Damasio proposes a massively parallel archit

distributed over the various regions of the brain, which feeds fragments of sensor

motor information into zones where feedback to the sensory and motor cortices is in

according to the combinatorics of the incoming information. Recollection is reactivatio

the regions of the brain associated with the early stages of experience.

The architecture proposed by Damasio consists of four layers:

1.) neuron ensembles located in multiple and separate regions of primary and first
sensory association cortices (“early cortices”) and motor cortices; they contain r
sentations of feature fragments inscribed as patterns of activity originally engag
perceptuomotor interactions . . .
2.) neuron ensembles located downstream from the former throughout single mo
cortices (local convergence zones); they inscribe amodal records of the combin
arrangement of feature fragments that occurred synchronously during the experie
entities or events in sector (1) . . .
3.) neuron ensembles located downstream from the former throughout higher
association cortices (non-local convergence zones), which inscribe amodal reco
the synchronous combinatorial arrangements of local convergence zones duri
experience of entities and events in sector (1) . . .
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4.) feed-forward and feedback projections interlocking reciprocally the neuron ensem-
bles in (1) with those in (2) according to a many-to-one (feed-forward) and one-to-
many (feedback) principle. (Damasio 1989, 25)

Experience is the time-locked activation of the fragmentary perceptuomotor records in (1),

which feeds into (2), where records of the combinatorics of the perceptuomotor inputs are

stored. Recollection is the time-locked activation of the records in (1) by feedback from the

convergence zones. It is important to note that the convergence zones do not store repre-

sentations, since convergence zones “serve as pivots for reciprocating feedback proj

rather than as the recipients and accumulators of all the knowledge inscribed at earl

els” (Damasio 1989, 38). Damasio introduces convergence zones to solve the binding

lem, the question of how unified representations arise from fragmented sensory re

Damasio extends the binding problem to recollection as well as sensory experienc

seeks to cover both with his notion of convergence zones.

In what way does Rapaport see Damasio’s theory as compatible with computation

as he envisions the latter? Rapaport argues that Damasio’s theory is an example of

producing semantics (or representations). He gives an example of a Damasio

‘amodal’ representation, shown in Figure 2-1, as it might be produced with the sem

network that is the focus of his work, SNePS, to illustrate this claim.
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Figure 2-1. Rapaport’s Damasio-like amodal SNePS representation of a pink ice cube. Node M4 is me
represent the simultaneous experience of the fragments of the experience. (Rapaport 1996)

In a traditional SNePS-like network, M4 represents a pink ice cube by virtue of the connec-

tions it has to the features, i.e. its location in the network. In a Damasio-like SNePS net-

work, on the other hand, it is not merely the connections but the co-temporality of

activation that is essential for binding the features to produce a representation. The ‘

relation is meant to represent co-temporality in the SNePS network. The assumption

a representation of co-temporality is sufficient to solve the binding problem. But the r

resentation of co-temporality requires an additional mechanism, namely that which

and interprets the ‘equiv’ relation. Co-temporality is not a symbol for binding, but rath

causal mechanism for bringing it about. Further, as noted earlier, and contrary to 

port’s interpretation, convergence zones are not representations. Convergence zo
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“uninformed as to the content of the representation they assist in attempting to recon

(Damasio 1989, 46) and “only the multiregional retroactivations of the fragment co

nents become a content of consciousness” (1989, 28). The combinatorial codes st

convergence zones are not themselves representations; they only facilitate represen

And representations are not amodal, because they are the result of the reactivation

ceptuomotor sites that produce the original experience. 

There are a number of other ways in which Damasio’s architecture differs from

proposed by Rapaport. The activation of a convergence zone does not merely dep

the simultaneity of incoming signals, and co-temporality does not suffice to unify feat

If this were the case, then convergence zones would not be able to distinguish betwe

ferent entities being experienced and feeding into the convergence zone at the sam

Other factors allow convergence zones distinguish between overlapping entities and

in experience, and to produce a gradation of responses. These factors are the differi

locus, number, and location of the sites a convergence zone subtends, as well

weighted potential trigger weights. The architecture Damasio describes resembles 

nectionist network far more than a SNePS-like network. Convergence zones even all

superposition of information, meaning that the combinatorial codes for different entit

a convergence zone can overlap, just as the weights of a connectionist network stor

mation about a variety of inputs in the same set of weights.

What of the claim that what Damasio is describing is a form of syntax realizing se

tics? Syntax is, in Rapaport’s words, “pure symbol manipulation” (Rapaport 1996, 7

there really anything going on here that even resembles symbol manipulation? One

argue that the activity of the convergence zones, with their binding “codes,” is a fo
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symbol manipulation. The use of the term “code” is rather unfortunate. Convergence 

and neuron ensembles in general, do not store codes. They are, instead, nonlinear d

systems whose parameters get tweaked by experience in such a way that they can b

or produce starkly different behavior from very similar sets of starting parameters, 

different objects are encountered (these ideas will be explored more fully in chapters

7). The fact that convergence zones can produce pathological behavior, which is to s

confused between inputs from different entities or events, strongly suggests that the

no discrete codes uniquely linked to particular entities. Even if we accept the notio

stored code, it is clear that Damasio does not consider these codes to be represent

Dynamic systems allow for combinatoric arrangements without the need for ex

codes describing those arrangements. Although Damasio writes, seemingly in the s

Fodor, that

representations are interrelated by combinatorial arrangements so that their in
activation in recall and the order with which they are attended, permits them to u
in a “sentential” manner. Such “sentences” embody semantic and syntactic princ

he is neither endorsing the view that representations are combinatorial codes nor th

that representations are sentences in a language of thought. All that is addressed h

timing issue, how the sequential occurrence of representations can be mapped

sequential structure of human language.

Finally, there is Rapaport’s contention that Damasio’s theory fits well with his 

Kantian “representative realism”: “Note, though, that we have here a neuroscientific

logue of a Kantian epistemology: Our conceptual schemes allow us to make sense

categorize—noumena . . .” (Rapaport 1996, 85). Damasio, however, sees categoriza

as the imposition of our conceptual scheme on reality, but as a far more complex ph
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enon. In criticizing the classical localization of function along traditional anatomical

boundaries, Damasio argues that the structure, both the fragmentary records and the con-

vergence zones, responsible for a particular function such as categorization are spread

across anatomical boundaries and

the region thus formed obeys anatomical criteria dictated by the nature of the entity rep-
resented, and by the interaction between perceiver and entity, and is secondarily con-
strained by the potential offerings of the anatomy. (Damasio 1989, 51) (emphasis
added)

Here, we have the noumena dictating how they are represented, with neurobiological con-

straints being of only secondary importance. Neuroscientists tend to be full-blown realists

rather than just “representative realists”.

2.3.2.5 Computational ‘Understanding’ Is not Understanding

What implications does this analysis of the differences between Damasio’s theor

Rapaport’s computationalism have for our two questions? Even if we eliminate Dam

theory as a candidate for how syntactic semantics is realized, we have not necessar

quished the latter’s possibility. We may have simply weakened the case for the claim

computers cognize as humans do. The differences between the two, however, have r

what computational systems as pure symbol manipulators currently can’t do. If thou

merely the right input-output relations, then its realization is time independent (cf

Gelder 1995). It does not matter if it takes a year or a nanosecond to produce the ou

the process to qualify as a thought, nor is the timing of the process important to pro

that use this output as input. One might attach a time-stamp to an outputted symbo

done in computational systems controlling time-critical operations, but this does

achieve what neuron ensembles are doing. The synchronization of neuron ensembl
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is essential to the production of representations. Attaching time-stamps to computational

markers and even synchronizing their production changes nothing essential about them.

Thus, we must answer the first question, whether computational systems can produce

the same input/output relations, in the negative. But Rapaport is willing to accept that

thoughts are not computations, so long as they are still computable. We have reason to

believe from the Chinese Room argument that understanding is not computable. Rap

syntactic semantics is meant to counter that argument by showing how understand

come from pure syntax. The key claim of Rapaport’s theory is that self-understand

necessarily syntactic; without establishing this, the base case of the recursive acc

semantics would not be syntactic, implying that all of semantics is not syntactic. 

understanding is syntactic, because it is a model of itself, a set of markers with conne

back onto itself. Unless, of course, this is not what self-understanding is. The lack o

dence for the existence of such markers in mind/brains is one reason to reject this v

understanding. The error of identifying causal structure with syntax will be discussed 

next section. And finally, alternative notions of self-understanding will be presente

chapter 6. Absent these, there is a more powerful reason for rejecting syntactic sem

Chapter 4 will show how systems using markers for representations and syntax to e

the combinatorics amongst them always fall afoul of the frame problem.

The second question, whether the intermediary between input and output is m

itself almost moot at this point. More important is whether a computational system c

what a human can: understand its world. Still, we can’t just dismiss this question. Ra

argues that thoughts can be the results of an algorithm (Rapaport 1998). This could 

variety of things. It could be that thought is the output of the computational process
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would mean that thought is just a marker. Or it could be that a thought is the whole process:

input, output, and how one gets there. Presumably, however, how one gets from input to

output is immaterial for computationalists. Computationalists also hold that thoughts are

individuated based on input/output relations, so where does this leave the intermediate pro-

cess? Certainly, we don’t want to leave it out. The idea that thoughts are just mark

ridiculous. Nor do we want to say that thought is just a set of markers in the right o

This would allow the possibility of a random generator of markers stumbling u

thoughts. So, it appears we are left with defining thought as any process that gets u

an input to the appropriate output, however that is defined. Computationalism do

explain consciousness; it only explains its effects.

2.3.3 Computation as an Abstract Description of Causal Relations

A third form of computationalism can be found in the work of David Chalmers. Rather

identify computation with the transformation of symbols, Chalmers views computatio

an abstract description of the causal processes within a physical system: “A physical 

implements a computation when the causal structure of the system mirrors the forma

ture of the computation” (Chalmers 1996, 317-18). More specifically, there must e

one-to-one mapping from the input/output of the physical system to the computa

input/output, as well as a one-to-one mapping from the physical system's internal st

the formal states of the computation that specify the transition between input and o

Furthermore, this mapping cannot be accidental. To avoid Putnam’s (1988) criticism

any physical system could be seen to carry out any computation if it happens at any m

to display a series of internal states and input/output that map to a particular compu

Chalmers stipulates that the mapping must always hold for that particular process. 
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cess that does not map to the same computation each time it occurs is not truly a computa-

tion.

According to Chalmers’s definition of a computational system, every physical sy

implements some computation. This means that rocks, mold, and the digestive tracts

mals are all computational systems. To distinguish cognition from digestion (or s

around being a rock), Chalmers introduces the notion of an abstract causal topology.

thing has an abstract causal topology if one can abstract its causal processes fro

material instantiation in such a way that anything with the same input/output relatio

as these processes can then replace them in the system. Digestion can be modeled

putation, but one cannot replace the parts of the digestive tract with silicon computa

equivalents and still have a digestive system. Thus, digestion does not have an a

causal topology. A thermostat, according to Chalmers, does have such a topology,

therefore conscious. The difference between cognitive systems, like thermostats, and

tion is that the former is essentially computational; in other words, a system is cognit

virtue of implementing the right kind of computations. Even this characterization doe

fully capture Chalmers’s view, because he believes that while rocks and stomachs 

conscious, they contain subsystems that are (Chalmers 1996, 297). A thermostat, u

rock, has “canonical experiences,” experiences that “count” as the thermostat's (1996

The rock has a conglomeration of experiences from its conscious subsystems. 

Chalmers's account is computationalism's most severely flawed variety. First,

plainly false that all physical systems implement computation as Chalmers defines

physical system that at the atomic level demonstrates Brownian motion is not imple
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ing computation, because there is no computable function that random motion can be

mapped to. A random ‘function’ is not a computable function. 

Second, Chalmers has failed to demonstrate that the mind/brain has an abstrac

topology. Until researchers can replace the brain's cognitive structures with silicon 

this will remain an open empirical question. Further, because researchers have up un

failed to create artificial brains that clearly demonstrate cognition, the suspicion w

heavily that cognition is like digestion, a process that requires certain physical subs

Cognition would be the exception to the rule if it were otherwise. The burden of proo

on Chalmers’s shoulders, and he can only write blank checks about what he thinks 

science will someday show.

Third, Chalmers's formulation of computationalism is inapplicable to plastic sys

such as the human brain. Not only do neural structures carry out a variety of function

also change function in response to damage or learning (Kaas 2000). What Chalmer

is a notion of the ‘normal’ function of a physical system as the evolved or designed fun

in order to constrain computational explanations to physical processes that don

happen by accident to map to a computation. But normal function (Millikan 1984, 1

does not apply to structures that are not evolved or designed, such as a rock. Thus,

ers must give up the strong modal implication between how a physical process ma

computation and its being a computation, or his brand of computationalism does not

to brains.

Fourth, the mapping of causal relations to formal states of a computation is itself a

putable function, though not as Chalmers defines computation. Chalmers defines a c

tational system as a physical system that has a mapping of formal state-types th
81



mapped onto. To cognize the mapping between a causal and a formal system is to make a

formal abstraction of a formal abstraction of a causal organization. Chalmers tries to hide

this extra level by saying there exists a formal mapping that mirrors the causal structure.

But mirroring is mapping. This mapping is itself a computation when carried out, but a

computation in the usual sense of mapping one symbolic domain onto another. The map-

ping from causal relations to a formal system is itself not a formal abstraction of the causal

organization. It is a function that takes as input the causal relations and that outputs the cor-

responding mapping between formal state-types. Thus, Chalmers’s definition of a compu-

tational physical system is observer relative in the sense that it is a system that has a

mapping to a mapping of formal states, and a system has a mapping only in virtue of pos-

sible cognitive agents being able to specify the mapping. A similar definition would be that

physical systems are computational systems in virtue of there being scientific theories

about them. 

Finally, Chalmers’s version of computationalism is highly susceptible to criticisms

from proponents of dynamic systems theory (Globus 1992; van Gelder 1995). Dynamic

systems theorists argue that the systems they study are not decomposable into transforma-

tions between state-types. Thus, there are a host of non-random physical systems that do

not have mappings to mappings of formal states. An example we will see when we take up

dynamic systems theory is the Watt governor, a system whose global function can be

implemented in a computational manner, but whose own functioning cannot be decom-

posed into state-transitions.
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2.3.4 Computationalism as Information Processing

Chalmers has tried to avoid the question of what computation contributes to a causal system

by defining computation as an abstraction (of an abstraction?) of causal relations. Still,

Chalmers has found it necessary to impute special status to the computation of cognitive

systems over non-cognitive systems to avoid equating cognition with digestion. Replace-

ability of parts is this special distinction, though it is unclear why this would change the

nature of a physical system. Suppose 1% of the stomach were replaceable with silicon:

would this mean that digestion was now the same kind of special computation as cognition?

Chalmers suggest that a special set of computations is needed for cognition, and presum-

ably these computations are not found in the gut.

Mainstream computationalists have identified the type of these special computations as

information-processing functions, though there is wide controversy on the specific func-

tions themselves. Any device that does the same information processing as the mind/brain

presumably can replace components of the mind/brain or be used to build a mind/brain, ful-

filling Chalmers’s replaceability requirement while not fulfilling the requirement that

equivalent computational systems have equivalent formal mirrors of their causal organiza-

tion.    

Mainstream computationalism finds expression in both neurobiology and cognitive

psychology. Since, as noted by Fodor (1975), cognitive scientists are at least token materi-

alists, the prevailing view is that mental states are realized by computational brain states,

and so at the very least are the products of computation. Whether attempting to explain

mental states from the standpoint of cognitive psychology or of neurobiology, however, the

computational nature of the mind/brain leads to the methodological assumption that these
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states can be isolated. If a mental state is a computable function, then all that matters for

explaining its nature is the mapping between its input and output relations and its relations

to other mental states. The context of the function evaporates-it can be safely ignored. Phi-

losophers express this as ‘meanings are in the head, not in the world’, meaning that 

states are individuated by examining their functional aspects: their input, output, and

tions to other mental states.

2.4 A Step in the Right Direction: The Dynamical 
Systems Critique of Computationalism

There are several well-known challenges to computationalism, among them the reca

strains of behaviorism and Hubert Dreyfus’s (1972) critique of AI. Recently, several

losophers and scientists have proposed a new challenge to computationalism in the 

a dynamical systems theory approach to cognition. Rather than a symbol-proc

machine, philosophers such as Tim van Gelder view the mind/brain as a nonlinear d

ical system that is most appropriately understood in terms of state-space equations.

tion is a result of the dynamics of the given system, and not due to any computa

scheme. The dynamical systems approach, according to van Gelder, embraces the

connectionism, neurocomputational approaches, and artificial life, and provides a

alternative to the mainstream computationalism so dominant in cognitive science

Gelder 1995).

2.4.1 Van Gelder’s Example of Dynamic vs. Computational Systems

To illustrate the difference between a computational system and a dynamical system, van

Gelder describes two implementations of a governor, a device, in this instance, for auto-
84



matically adjusting the throttle valve on a steam engine in order to maintain its flywheel at

a uniform speed. This can be achieved with the following algorithm:

1. Measure the speed of the flywheel.

2. Compare the actual speed against the desired speed.

3. If there is no discrepancy, return to step 1. Otherwise,

A measure the current steam pressure;

B calculate the desired alteration in steam pressure;

C calculate the necessary throttle valve adjustment.

4 Make the throttle valve adjustment.

It can also be accomplished with James Watt’s centrifugal governor, a device that does

not make use of an algorithm. Instead, it solves the problem by the very nature of its con-

struction. The Watt centrifugal governor’s behavior is describable in terms of a second-

order differential equation, but not, according to van Gelder, in terms of computation. He

argues that computational systems have the properties of representation, computation,

sequential and cyclical operation, and homuncularity that dynamical systems do not pos-

sess.

Representations in the case of the computational governor are the measurements of the

steam pressure and speed of the flywheel, measurements that are stored and used as sym-

bols. While the centrifugal governor behaves in a manner such that the angle of its swinging

arms is related to the speed of the engine, the angles cannot be viewed as representations

of the speed for four reasons. First, there is no utility in describing the relationship in rep-

resentational terms, since the behavior of the centrifugal governor can be explained in
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purely nonrepresentational terms. Second, while there is a statistical correlation between

angle of the arms and the speed of the engine, this is not strong enough to establish a rep-

resentational relationship. The governor and engine are co-determining one another, so

there is not a uni-directional representation-represented relationship. Certainly, a discrete,

symbolic representation of the engine speed cannot be given in terms of arm angle. Third,

the relationship is not even mere correlation, because the correlation only obtains when the

total system has settled into a stable equilibrium point, and no longer obtains when pushed

out of this equilibrium. Finally, the appropriate “conceptual tool” for understanding

centrifugal governor is not the notion of representation, but the concepts of dynamic

Because the centrifugal governor does not have manipulable representations, th

mark of computation, according to van Gelder, it cannot be computational in nature

sequential, cyclic nature of the computational governor, namely that it repeats a cy

sequentially measuring angle and current speed and then adjusting the speed acco

cannot be found in the centrifugal governor. As long as the computational governor m

its computations within the appropriate amount of time, its operations otherwise ha

time constraints. Measurement could take 90% or 10% of the time of the adjustment

the exact amount being irrelevant. The centrifugal governor, however, has no such fr

from time constraints because its behaviors are all contemporaneous, not sequentia

The homuncularity constraint of a computational system is also often referred 

modularity. By 'homuncularity' van Gelder means that the overall functioning is decom

able into simpler functions carried out by simpler modules, whose interaction is the

munication of results. Such is not the case with a dynamical system like the centr

governor.
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2.4.2 Connecting Connectionism and the Dynamic Systems Approach

Van Gelder accepts connectionism to be a subset of the dynamical systems approach. In

doing so, he undermines his critique of computationalism. According to van Gelder, con-

nectionist systems differ from traditional computationalist systems in a variety of important

ways. Computationalist systems manipulate symbols, and symbols are the basic elements

of representations. While connectionist systems have representational interpretations, they

also have numerical, not symbolic operations, and these analog numerical operations are

usually nonlinear dynamical functions. This places connectionism within the dynamical

systems model:

The core dynamical hypothesis is that the best models of any given cognitive process
will specify sequences, not of configurations of symbol types, but rather of numerical
states goes hand in hand with a conception of cognitive systems not as devices that
transform symbolic inputs into symbolic outputs but rather as complexes of continuous,
simultaneous, and mutually determining change . . . (van Gelder 1995, 373)

However, this distinction is unprincipled. Numerical computation is symbolic compu-

tation. Indeed, it is almost humorous to think of standard treatments of the theory of com-

putation, in which computation is defined in terms of transformations of input 0s and 1s to

output 0s and 1s, in the context of van Gelder’s critique. Van Gelder has apparently forgot-

ten what connectionist systems are implemented on, namely symbolic processors (comput-

ers). While the connectionist paradigm, in its emphasis on analog computation, is closer to

modeling the brain than traditional symbolic systems, the distinction does not imply that

connectionist systems are not computational systems.

Perhaps van Gelder is suggesting that the nonlinear differential equations used in con-

nectionist systems are not computable functions, and therefore connectionist systems are
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not computational systems. This, of course, is false. Were it true, no one could implement

a connectionist system on a computer. 

The attraction of connectionist systems to van Gelder and others lies in their use of vec-

tors and weights. Because it is implausible that there are 0s and 1s in the brain, and the net-

works of neurons in the brain are somewhat describable in terms of vectors of processing

units, the superficial attraction of connectionism is obvious. But it is equally unlikely that

the brain stores and manipulates vectors of floating point numbers (which computer imple-

mentations of neural networks do) as that it stores and manipulates 1s and 0s.

The homuncularity constraint on computational versus connectionist systems is another

unprincipled distinction. At some level of computational systems, there are primitive func-

tions that are no longer decomposable. Connectionist systems are more difficult to decom-

pose, and a particular connectionist system might not be decomposable down to each value

of its weights. The function a connectionist system computes is not, in its implementation,

a primitive function. But then again, from the standpoint of the connectionist, no function

is primitive, because all functions can be approximated to an arbitrary degree by using the

Fourier approximations. This can be achieved in a connectionist system by using a feedfor-

ward network with one hidden layer of neurons computing cosine functions (Hecht-Nielsen

1989). What a connectionist system is doing is decomposable to a degree largely ignored

by the proponents of the connectionist/symbolist distinction in cognitive science. To say

that connectionist systems show no homuncularity seems to be nothing more than an effort

to carve out a philosophical distinction where there is none. 
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As for van Gelder’s arguments concerning the nature of representational versus nonrep-

resentational systems, they boil down to the following: if the behavior of a system is

describable in terms of a differential equation, it is not a representational system.

2.4.3 Why van Gelder’s Example is Not Enough

By seeking to place connectionism in the domain of dynamical systems approaches to the

nature of cognition, van Gelder has blunted the legitimate criticisms of computationalism

stemming from research into biological dynamical systems. His analysis of the differences

between a computational governor and a centrifugal governor points to, though never

explicitly names, the essential distinction between the two. The computational and the cen-

trifugal governor both have as their gross function the maintenance of uniform engine

speed. The possibility of a computational governor standing in for a centrifugal governor

demonstrates that the centrifugal governor’s gross function is computable, after Rapaport’s

usage, though not that it is indeed doing computation. Van Gelder attempts to draw this dis-

tinction by arguing that computational systems are symbolic, and therefore representa-

tional, whereas dynamical systems are numerical, and therefore nonrepresentational. As

has already been argued, the distinction between symbolic and numerical systems is

unprincipled, and so does not sustain van Gelder’s representational/nonrepresentational

dichotomy. Furthermore, if we consider cognitive systems at the ecological level of analy-

sis, i.e., as persons functioning in an environment, dynamical cognitive systems are repre-

sentational; this is their function in the sense of it being their ’purpose.’ The purpose of a

centrifugal governor is not to represent, but to control the speed of an engine. Since both

the computational and the centrifugal governor achieve their purpose, that one is computa-

tional and another isn’t doesn’t matter to whether they are governors. Why should it matter
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for cognitive systems whether they are computational or not? Rapaport is willing to con-

cede that many systems are not computational, but what they do is achievable by a compu-

tational system. Although Rapaport contends that mind/brains are actually doing

computation, it is enough for him that their functions are computable. Just as we can mimic

a centrifugal governor as a computational system to a degree adequate to its gross function,

so too, contends Rapaport, could we mimic a biological cognitive system with a computa-

tional system to a degree that it qualifies as a cognitive system. Van Gelder must argue that

the implementational details of the biological cognitive system are more important than sat-

isfying the gross, ecological level function of representing. Otherwise van Gelder has

merely established that cognition doesn’t happen to be computation, though it could be

implemented as such.

In one sense, van Gelder’s use of the two types of governors as a means of distinguish-

ing representational from nonrepresentational was a poor choice. Both governors are engi-

neered for the explicit purpose of controlling the speed of an engine, and therefore the

implementational details matter only if they result in one governor performing better than

another. Rapaport himself has provided a better example: the solar system. As has been

argued above, even though the laws governing the solar system’s evolution are computable,

creating a computational model is not equivalent to making a solar system. A closer com-

putational approximation would be to create large pseudo-planets and control their motions

according to Kepler’s laws with computers firing immense rockets. But if we could create

these pseudo-planets, Kepler’s laws would apply to them regardless of our computers being

on board. Thus the implementational details in the case of the solar system are essential.

There are, of course, numerous solar systems in the universe, and these solar systems have
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different planets than our solar system. A solar system is a functional type at a certain level

of analysis only. Structure does make a difference to a certain degree. Consider what level

of structure it takes for something to count as a star. Computationalists argue, however, that

structure makes no difference so long as you have a universal Turing machine available, as

universal Turing machines can compute any function that a mind computes. Van Gelder has

undermined his argument by relying on an example where the computationalist approach

is as good as the noncomputational approach. What is the principled distinction between

the two approaches that renders computationalism impotent to produce cognition?

That principled distinction is between information-processing and noninformation-pro-

cessing systems as cognitive scientists understand information-processing. A solar system

is an example of a noninformation-processing system, a system that can be modeled, but

not replicated by computational systems. This is because solar system is not a pure func-

tional type in the way that governor is. What counts as a governor is determined by the

function it serves. What counts as a solar system depends also on the structure of its con-

stituents and their causal interactions. For van Gelder’s argument to work he would have to

focus on the fact that a computational governor could never be a centrifugal governor, and,

in fact, where he does make this argument, he is on solid ground. But he cannot make this

argument with the distinction between symbolic and numerical systems, which becomes

the main thrust of his argument, as there is no real distinction between the two. The argu-

ment to be made then is that information-processing systems, in the sense of information

intended (vaguely) by cognitive scientists, cannot be true ecological-level representational

systems, that computational systems cannot carry out the proper functions of cognitive sys-

tems. Such ’in principle’ arguments about empirical matters are always dangerous, so we
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will make the more tempered argument that there are strong reasons to believe that compu-

tational systems cannot replicate human cognition.

2.5 Refining the Dynamical Systems Critique

Although van Gelder has blunted the force of his critique of computationalism through his

efforts to save connectionism, he has nonetheless laid the foundation for a true dynamical

systems challenge. Van Gelder’s contention that dynamical systems do not possess manip-

ulable representations points to the need for new notions of information and information-

processing. His discussion of reciprocal causation highlights an essential difference in

mechanisms between computational and dynamical systems. Finally, his insistence that a

computational governor cannot do what a centrifugal governor is capable of doing despite

the equivalence in gross function suggests a stricter criterion for judging functional equiv-

alence. We turn now to developing each of these aspects of van Gelder’s critique.

If a cognitive system does not possess simple, manipulable representations, then its

complex information-bearing states cannot be explained in terms of their decomposition

into simpler representations. Just how radical this conclusion is has apparently not occurred

to Van Gelder. One of the primary avenues for criticizing connectionism has been the fail-

ure of connectionist architectures to mimic the ability of humans to compose representa-

tions, and, in response, connectionists have focused on showing how their architectures can

indeed compose representations as humans do. The dynamical systems perspective is that

the (de)composability of representations is a myth, because mind/brains do not have repre-

sentations as understood by cognitive scientists. Rather than arguing that neural nets can

build representations too, dynamical systems theorists ought to provide an alternative
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notion of information. J.A. Scott Kelso (1997) has presented one such notion. He argues

that the order parameters that capture the relations between aspects of dynamical systems

are themselves informational:

order parameters in biological systems are functionally specific, context-sensitive
informational variables . . . Order parameters are semantic, relational quantities that are
intrinsically meaningful to system functioning. What could be more meaningful to an
organism than information that specifies the coordinative relations among its parts of
between itself and the environment? This view turns the mind-matter, information-
dynamics interaction on its head. Instead of treating dynamics as ordinary physics and
information as symbolic code acting in the way that a program relates to a computer,
dynamics is cast in terms that are semantically meaningful. (Kelso 1997, 145)

Kelso’s formulation is susceptible to a Searlean form of criticism: order parameters are not

intrinsic to the physics of dynamical systems, so he is conflating the description of a system

with its nature. But Kelso has not made the same error as those who impute syntax to the

operations of the brain. An order parameter captures a known behavior of a system without

requiring the assumption that the order parameter is somehow intrinsic to the system in

some sense. What Kelso is really arguing is not so much that order parameters are semantic,

but that the relations among parts of the system are intrinsically meaningful-they constitute

meaning-and so the order parameters that describe these relations describe the semantics of

the system.

This is all very vague, and will remain so until we attempt to describe some of the rela-

tions of the mind/brain dynamical system in chapters 6 and 7. However, what is clear is that

the dynamical systems approach requires a radically different notion of information from

that proposed by the proponents of symbolic models of mind. The beauty of such symbolic

models is lost: the composability of symbols mirrors the apparent composability of repre-

sentations. What the dynamical systems theorist gains, however, is an immediate link

between brain and the environment, and thus is not faced with the monumental task of
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explaining how symbols have meaning. As we will see shortly, some computationalists

have recognized the benefits of the dynamical systems approach, and attempted to copy it

by extending the notion of a computational cognitive state to include aspects of the envi-

ronment.

Physicists have long marvelled at the astonishing capacity of mathematical/computa-

tional models to explain the workings of the universe. Why should the universe conform to

mathematical description? Or thinking of the problem at hand, why should the brain con-

form to computational description? One answer is that perhaps it does not. Computational

descriptions of brain processes have one glaring advantage over dynamical systems

approaches: they are much easier to understand. This ease is due in large part to the decom-

posability of computational processes. Computers are designed as they are not only for the

sake of efficiency in processing, but to facilitate analysis of their workings. Engineers

design machines with the goals of getting the job done and understanding how this was

accomplished. Accomplishing the latter goal enables the engineer to fix whatever goes

wrong in the machines. A computational approach guarantees the engineer that for any

given input, there will be one output that it is mapped to. But Nature does not need to satisfy

this constraint, and this is where the all-too-often used analogies between Mother Nature

and an engineer break down. For Mother Nature, transparency of function is unnecessary;

what is important is that the ’job’ gets done. If it doesn’t, Mother Nature is capable of

expending considerable resources trying other designs. This widely acknowledged fact

leads to the suspicion that computational explanations of the mind/brain are so popular

because they indulge our prejudice for transparent design. To recast the dynamical systems
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critique in evolutionary terms, why would computational processes be selected for, or, even

more perplexing, how could they self-organize?

Daniel Dennett and Richard Dawkins have each made this question seem unnecessary

by characterizing mental development and genetic evolution as processes of incremental

building. A computational design seems to be the most advantageous option for an organ-

ism if at every stage of its development/evolution, its behavior must give it some benefit.

Being decomposable also means being composable, so computational processes can be

slowly added with each prior stage still providing an advantage. For example, an organism

that has only simple edge detectors in its visual system might later ’add’ line detectors,

which take as input the output of the edge detectors. Dawkins (1976) has offered an evolu-

tionary/genetic account of this process, and even theorized how the genotype of an organ-

ism is decomposable in a way similar to its phenotype. Genes ’for’ edge detectors provide

a selective advantage, and genes ’for’ line detectors provide a greater advantage, albeit in

the context of there already being edge detectors. But Dawkins’s Selfish Gene metaphor

does not imply that Mother Nature has a predilection for decomposable, let alone, compu-

tational processes. Furthermore, it would be incorrect to think that a dynamical system

cannot be incrementally built. Rather than composing computable functions, Mother

Nature might be tweaking the parameters of various dynamical systems, resulting in better

performance or even novel functioning. Evolution may add components to the dynamical

system in question, but this is not the same as composing computable functions. A whole

new dynamics arises from such an addition.

So is there any reason to believe that natural selection favors one approach over

another? Yes, because computational systems have an inherent drawback not found in
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every dynamical system: their brittleness. The nature of a computable function is to map a

unique output to each input. An error in output at one level means an error in input to the

next level of the computation. This problem can be corrected by routines that check the out-

put, but this increases computational cost. But such routines are necessary to prevent cata-

strophic breakdown. Examples are: Intel’s FDIV bug, a design error in their Pentium

processor that resulted in floating point division errors, errors that compounded if one com-

puted a series of divisions; spray-paint robots on assembly lines turning and spraying one

another; and robots that drive autonomously suddenly spinning out of control. This is not

just an artifact of human error in designing computers and robots, although it is best high-

lighted by such cases. Error will inevitably creep into an organic system that is in the pro-

cess of dying, as we are. Hysteresis, a lag in effect when forces change, is just one property

of dynamical systems that may act to dampen error. All computational systems are threat-

ened with catastrophic failure due to compounding error, not all dynamical systems are.

This seems to be a clear advantage for the latter and reason to suspect that Nature has

selected for a dynamical rather than a computational cognitive system.

The differences in mechanism between computational and dynamical systems respon-

sible for this difference in the effects of error is paramount. Computational systems are

mapping systems: their causal processes are constructed so as to conform to a mapping

between abstract domains. In the case of the computational governor, an error in the mea-

surement of the fly-wheel results in an error in the adjustment to the throttle valve. In the

case of the centrifugal governor, the relation between the speed of the fly-wheel and the

throttle valve is not a mapping between states. Instantaneous measurements of the states of

both reveal only a statistical correlation. The mechanism for adjusting the throttle valve is
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built into the system; no measurement is required. Nor do systems that dynamically adjust

in this manner employ mechanisms to check for error in their components. Rather, the

global error of this system can be measured, and parameters tweaked to reduce the error. A

functional decomposition is not available, because such systems are not designed by com-

posing functions. What this means is that if the mind/brain is such a dynamical system,

functionalist philosophy of mind is false. At best, the global functions of brain might be

replicated in silicon. The question is now whether cognitive functions are replicable, or

simply the behavioral outputs of these processes.

The proponents of the dynamical systems approach to cognition must admit that the

teleonomic or purposive function of a given dynamical system can be replicated in compu-

tational systems. Both the computational and centrifugal governors serve the purpose of

maintaining appropriate steam pressure by adjusting the throttle valve. Similarly, robotic

arms and grippers can pick up garbage and throw it in the trash just as humans do. But this

does not imply that robotic arms are replicating the mediating processes that result in

human arm motion. Cognition is itself a mediating process for advantageous behavior. That

a computer can add 2 and 2 to get 4 does not imply that its mediating processes are forms

of cognition as the mediating processes in humans are when they do addition. What the

dynamical systems proponents have demonstrated is that the mediating processes in

dynamical systems are different from and not replicable by computational systems. The

functions of the two forms of governors are the same, but the mediating processes are rad-

ically different. Similarly, the type of information-processing found in a computer is radi-

cally different from that in a putative dynamical cognitive system, and cannot replicate the
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latter’s processes. This is why functionalist answers to the dynamical systems challenge are

inherently inadequate.

2.6 Problems with Clark’s Strategy of Partial Programs

In his recent book Being There: Putting Brain, Body and World Together Again (1997),

Andy Clark concedes that cognitive science has focused too much on disembodied compu-

tation, and that the criticisms of ecological psychologists, situated roboticists, and dynam-

ical systems theorists must be incorporated into cognitive science if it is to make headway.

In particular, computationalists have ignored the extent to which the environment is used

by sentient beings to constrain and simplify their cognitive tasks and discounted the idea

that the environment ought to be considered part of the cognitive system itself. Clark makes

two important suggestions as to how computationalists can incorporate these criticisms

without surrendering the basic computational account of cognition.

First, Clark suggests that more emphasis be placed on what he calls action-oriented rep-

resentation. This is representation that is tailored to specific, local tasks rather than to

generic problem solving. Much of the representational burden is “offloaded” to ext

representations or constraints. Thus humans and other animals tailor their environm

simplify tasks, whether it be by leaving post-it notes, as in the case of humans, or ch

trails, as in the case of some insects. Language is the most powerful tool at our dispo

offloading computational burden and restructuring problems to make them easier. A

oriented representation is a fusion of environmental cues or external representation s

and internal representations. In Putnamian terms, representations must be individu

terms of wide content, and Clark seems convinced that a computational scheme is up
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task. Dynamical systems theorists might be right that certain behaviors are best understood

by the tools of dynamical systems theory and not in terms of representations, but these phe-

nomena were not ‘representation-hungry’ in the first place. By this, Clark means ca

which it is hard to imagine how the phenomena could occur without internal repres

tions. These are cases where a system must use an inner code or pattern to “stan

states of affairs that are not immediately present to the system, and these codes are “

individuable” (1997, 168). “Usefully individuable” denotes “fine-grained assignment

inner vehicles to information-carrying adaptive roles” (Ibid).

The second way in which computationalists can refine their theories is by de-emp

ing the picture of the mind/brain as a central executor carrying out a stored program fo

nition. Daniel Dennett has made a similar point with his multiple-drafts mode

consciousness. The simplest and most compelling argument in its favor is that of th

erty of the genetic code for storing the program(s) implementing consciousness (

1992). The brain has on order of 1010 neurons and 1014 connections between neurons, we

beyond the storage capacity of the genetic code to even set up the architecture for r

the program. Instead, Clark advocates limiting the explanatory role of computation to 

ized, partial programs. Clark likens the difference between the two approaches to two

ods for doing one's taxes: the first has an elaborate LISP program to do the step-

calculations, whereas the second is merely the stored command Do Tax that runs o

ware specifically for calculating taxes. The dynamical systems theorist can explain ho

latter method's hardware comes about, but ultimate explanation lies in the simple 

program.
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In making these concessions, Clark has bitten off more than computationalism can

chew. Rather than simplifying the explanation of cognition, Clark complicates it by requir-

ing an interface between the dynamical systems and the partial programs he views as run-

ning the subsystems of the mind. Clark suggests that the oscillation of a set of neurons is

not only a dynamical system, it is also an information-bearing system. For the partial pro-

grams to use this information, they must be able to decode the information from the dynam-

ical system, a herculean task for neuroscientists though not necessarily for neurons. Such a

decoding scheme would presumably be part of the stored partial program, increasing the

complexity of what is to be stored. Just as with Daniel Dennett’s multiple-drafts model,

these partial programs require integration amongst one another for coherent mental states

to arise. Is this integration done by another program, or are the partial programs aspects of

a global dynamical system which itself is not computational? As with Dennett, Clark does

not answer this question.

Clark’s response to the dynamical systems theorist is weakest when he considers the

constraint of contemporaneous, reciprocal causation that dynamical systems exhibit, and so

Clark tries to restrict the instances of pure dynamical systems to non-representation-hungry

cases. The causal organization of dynamical systems is generally not decomposable into a

step-by-step causal chain similar to what we find when we describe the motion of a billiard

ball. Like those of the Watt governor, the components of the dynamical system are in a

reciprocal causal relationship. Further, the behavior does not occur in a series of discrete

time steps. Initial conditions of the system also factor heavily into the behavior of the sys-

tem, so that two seemingly identical dynamical systems that are started with different initial

conditions can exhibit startlingly different behavior. There are two important consequences
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of these aspects of dynamical systems. First, such a dynamical system is not a computa-

tional system, either in the mainstream or in Chalmers’s sense. Second, partial programs

that interface with them must not only be able to ‘start’ them, but also be cognizant of the

proper initial conditions for starting them. This increases the computational load on the par-

tial program to such a degree that it loses its explanatory value. Remember that partial pro-

grams were part of a system that offloaded computational burden. So even if the dynamical

systems approach only applies to non-representational-hungry phenomena, the partial pro-

grams for representational hungry problems, by Clark’s own admission, still make contact

with these basic means of cognition, and thus require an interface between them. In many

cases, it doesn’t take much to kick-start a dynamical system, unless, of course, you want it

to behave in a certain way. Then it takes substantial computational work to make sure the

initial conditions are right. In the end, fully computational system and fully non-computa-

tional systems are less complex than hybrid systems.

2.7 The Uses and Limits of Computationalism

It is impossible to limit the dynamical systems critique of computationalism to symbolic AI

and language-of-thought models of mind, as van Gelder has attempted. Connectionist and

neurocomputational models of the mind/brain employ the very same notion of computation

as that found in symbolic AI, and later I will demonstrate just how little connectionism

departs from traditional AI. Yet, neurocomputational research appears to be yielding sig-

nificant results, allowing scientists to predict and affect how the brain operates (Churchland

and Sejnowski 1992; Gazzaniga 1995). If computationalism is inherently flawed, how do

we explain these results? 
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I do not endeavor to solve this apparent paradox at this juncture, leaving it for the final

chapter on an alternative approach to the mind/brain. Instead, I will merely hint at its solu-

tion. Neurocomputational models of the brain restrict themselves to small subsets of brain

activity. They primarily describe the behavior of single cells and maps of cells taken in iso-

lation. It is not surprising that a computational model can simulate the behavior of a cell,

any more than it is surprising that a computational governor can simulate the behavior,

grossly understood, of a centrifugal governor. The key is that this is only simulation, and

the computationalists generally acknowledge this. Thus, cells in the visual cortex are

thought to respond to certain stimuli ’as if’ they were computing the Laplacean of a Gauss-

ian (LOG) function. But the behavior of the cells do not perfectly map to a LOG function,

or any of the other similar proposed functions. Computationalists think that they have just

not found the correct function. An alternative theory is that the cells are not computing a

function, though their behavior can be grossly described by a particular function, but con-

tributing to a dynamic that we do not yet understand because we do not even remotely

understand the global dynamics of the brain. The components of a centrifugal governor

could be modeled computationally, and such a model could yield useful predictions, but

they would not enable us to explain the global dynamics of the system.

The successful modeling of single cells and maps of cells is supposed to tell us the place

of these components in the informational flow of the system. There can be little dispute that

they do tell us something of this nature: when a subject sees an edge in his visual field, and

a simple cell fires consistently when, and only when, an edge of that orientation is present,

there can be little doubt that this cell is at least partly responsible for the subject ’seeing’ the

edge. What is in dispute is whether this cell computes a function indicating the existence of
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the edge from the information flowing to it from the visual pathway, and whether it passes

this information on, encoded in its firing pattern. Only if the nature of information passed

in the brain is equivalent to that passed in a computer can we conclude that cognition is

computable. The dynamical systems theorists have given strong reason to doubt this is true.

If they are right, then the methodology of computationalism is a dead-end street.

2.8 Computationalism’s Failure to Explain the Nature of 
Representation

According to computationalists, minds carry out information-processing operations by car-

rying out computations. The abstract tokens that form the input and output of computations

are not merely syntactic markers in the view of computationalists: they are symbols stand-

ing for objects and events in the world. Thought is the act of transforming symbolic input

into symbolic output: the production of semantic information. Thus, the task of explaining

what semantic information is is transformed into that of explaining how abstract tokens

become ‘grounded’ symbols.

Just as semantic information could not be understood in terms of syntactic inform

so too the representational capacity of minds cannot be explained in terms of forma

over abstract tokens. Representations track the world; they are plastic and adaptiv

environment of a representational system is essential to the formation of its represen

The environment of a computational system is just its input space. Computational sy

are incapable of understanding, whether Chinese or how to bake a cake, because 

not adapt themselves to the world. Which symbol stands for ‘cake’ is entirely arbitrary
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by virtue of what it stands for cake is indeterminate. In fact, what relation ties a symbol to

its object is also arbitrary (causal connection is not a necessary part of a symbol system).

Dynamic systems theory has emerged as an alternative to computationalism, and not

merely a complementary mechanism. It offers an account of how representational systems

attune themselves to the world that eschews the need for symbol-grounding explanations.

Connectionism, on the other hand, is a compromise between computationalism and

dynamic systems theory. While computational in its implementation, connectionism is

often regarded as an exception to computationalism (van Gelder 1995), possessing compu-

tationalism’s abstract realizability, while discarding its implausible aspects (such as symbol

manipulation and seriality). In the next chapter, I will address the theory of connectionist

exceptionalism. What will emerge is that connectionism bears the worst faults of computa-

tionalism, while possessing little of the aspects of minds as they are realized in real brains. 
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Chapter 3 Connectionism: 
Computationalism’s Prodigal 
Son

The reemergence of artificial neural network research during the 1980s gave rise to a new

philosophy of mind known as connectionism. Artificial neural networks (ANNs) provided

connectionist researchers with a tool for modeling cognitive behavior which resembled the

structure of the brain as it was being uncovered by neuroscience. While connectionists par-

enthetically noted the important differences between biological neural nets (BNNs) and

their artificial cousins, the similarities were considered to be an important gain over tradi-

tional AI tools. The structure and functioning of ANNs also suggested a radical view of rep-

resentation, one that contradicted the long-standing notion that representations were

implemented in minds via atomic symbol tokens. This encouraged the view that a connec-

tionist system is a different kind of computational system, because its primitive computa-

tions are not over representations. The computation that connectionist systems carry out is

termed subsymbolic, because it is computation over symbol tokens, which do not have a

representational interpretation. Representations are held to emerge at the network or system

level, rather than at the level of symbol tokens. This distinction is held to provide a variety

of benefits, such as enabling subsymbolic systems to avoid Searle’s Chinese Room argu-

ment (Chalmers 1992).

In this chapter, I will examine claims that connectionism is a significant departure from

traditional computational approaches in symbolic AI, one that holds the keys to solving

AI’s problems. Researchers such as Churchland, Smolensky, and van Gelder have argued
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that connectionism possesses a form of computational exceptionalism, that its computa-

tional methods do not suffer the same drawbacks as traditional symbolic systems. Contrary

to this claim, I will demonstrate that connectionism still harbors the flaws that prevent tra-

ditional AI from achieving the goal of implementing thinking agents, that the exceptional-

ism of its representational interpretation is in some cases irrelevant, in others non-existent.

In addition to detailing the general shortcomings of connectionism, I will examine several

examples of connectionist systems: the neural network for vehicle navigation known as

ALVINN, Phillipe Schyns’ work on categorization using self-organizing neural networks,

the state of the art in connectionist natural language processing (NLP), and a neurocompu-

tational model of mammalian navigation. Regarding the first two, I will show that the

claims concerning their ability to think or adequately model human cognition are false.

Connectionist NLP will return us to the problem of symbol grounding, demonstrating that

connectionist systems, just as symbolic systems, require the intervention of a cognitive

agent for symbols to be grounded; hence, they do not truly ground their symbols. The last

example will show that ANNs cannot provide a true dynamical systems account of neural

performance, countering van Gelder’s (1995) claims that connectionist and neurocomputa-

tional models represent dynamical systems rather than computational approaches.

3.1 What is Connectionism?

Connectionist networks are collections of simple processing units working in parallel to

transform inputs to outputs. This transformation is generally achieved by passing the inputs

through weighted connections and applying a transfer function to the sum of the product of

weights and inputs. The simple processing units, often referred to as neurons, are usually
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organized in layers. Connections between neurons can be inter- or intra-layer, inhibitory or

excitatory, integer- or real-valued. The transfer function applied to the sum of the weighted

inputs can be either linear or nonlinear, e.g., the commonly used nonlinear transfer function

tanh. The network can have a single layer or multiple layers, although the latter is far more

common. Layers between the input and output layers are referred to as hidden layers. The

activity of the hidden layers of a network is generally the focus of any analysis of the net-

work’s performance, because the hidden layers are the ones that form representations of the

input-output relationships.

Hidden-layered networks have important properties that make them desirable for use in

connectionist modeling. Hidden layers enable the input to be cast nonlinearly into a higher-

dimensional space. According to Cover’s theorem (1965), a problem cast nonlinear

higher-dimensional space is more likely to be linearly separable1 than one cast in low-

dimensional space. Therefore, using a hidden layer with greater dimensionality tha

input space increases the chances that a solution to the problem at hand will be foun

thermore, hidden-layered neural networks such as backpropagation nets and Bolt

machines can serve as universal function approximators, capable of approximatin

continuous function to an arbitrary degree (Haykin 1994).

Not all networks, whether multi-layered or not, count as connectionist networks

important constraint on connectionist networks is that the computations are all local.

this means is that each neuron only knows about its own inputs and outputs. Ther

global information directed to a neuron, such as a rule to the effect: If 5 other ne

1.  Linear separability refers to the ability to separate a problem space into the desired classes by partitioning 
with a hyperplane. The hyperplane separating points in 2-dimensional space would be a line, in 3-dimen-
sional a plane.
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output 1, also output 1. This constraint disqualifies certain activation spreading models

from connectionism, and is based on the assumption that a similar constraint holds in

BNNs. This constraint figures importantly into connectionist explanations of cognition, as

connectionists claim it enables their systems to discharge any homunculi by building intel-

ligent systems out of dumb components.

Connectionism can be defined in part by the departures it takes from symbolic AI. The

following is a brief list of connectionist criticisms of symbolic AI and the connectionist

alternative, loosely following Churchland and Sejnowski (1989) and Smolensky (1988):

1. The brain is a parallel, rather than a sequential, processor. While symbolic AI tends 

to view conscious thought as sequential processing of information, although not 

necessarily sequential, connectionists argue that the parallel nature of the brain is 

essential to how conscious thought occurs. Connectionist models therefore consist 

of massively parallel nets of simple neuron-like processing units, each neuron com-

puting in itself a simple function, which contributes to the global function com-

puted by the net. 

2. Symbolic AI models cannot match the speed at which the brain processes, despite 

the relatively slow rates at which neurons fire. Connectionist models achieve high 

rates of processing by means of the same mechanism as the brain- namely parallel 

processing.

3. Connectionists contend that the memory of their models is content addressable, 

rather than location addressable. This means that instead of retrieving a memory by 

providing the location or address of that item in the brain/computer, memories are 

retrieved in connectionist models by matching or completing a key based on the 
108



content of that key. Many symbolic AI models store specific memory items in spe-

cific locations, to be retrieved by specifying the location. Since representations in 

connectionist models are massively distributed, being stored as weights between 

neurons, no specific location can be given for a memory item. Retrieval is achieved 

by presenting the network with input in some way associated with the memory 

item. This objection to symbolic AI holds only for those symbolic systems that do 

not use content addressable memory.

4. Connectionists complain of traditional AI’s dependence on Von Neumann style 

architecture. Again, this is a complaint about the sequential nature of the latter’s 

models, this time with regard to the hardware used.

5. Connectionists such as Churchland and Sejnowski reject the hardware/software dis-

tinction regarding the mind/brain made by functionalists. The behavior of a neuron 

is not due to a program running on it; rather it is tied to its physical structure.

6. Symbolic AI models only a small fraction of mental life, namely higher cognitive 

functioning. In doing so, its practitioners have elaborated a series of theories that 

have no application to animal cognition, and as such, posit an enormous leap 

between the cognitive capacities of humans and animals. Such a gap is not war-

ranted from an evolutionary perspective, since the development of conscious 

through evolution is undoubtedly a continuum (saltational accounts of evolution 

being generally rejected). Do we posit a more primitive language of thought for ani-

mals? Even a primitive language of thought could serve as the basis for a linguistic 

capability, albeit primitive, lacking in the vast majority of animals.
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7. The sentence/logic model of cognition employed by symbolic AI is clearly not a 

true theory of how humans think. Research by Nisbett and Ross (1980) has shown 

that humans generally do not follow logical patterns of thinking, instead employing 

all sorts of shortcuts, hedges, and even fallacies to draw inferences. Human thought 

that does not conform to the structure of formal logic, i.e., intuition, is better cap-

tured by probabilistic or constraint-satisfaction models. Both types can be imple-

mented as connectionist networks.

Thus, connectionist criticism of symbolic AI focuses on three areas: the neural plausibility

of symbolic models, the form of cognitive processing implied by these models, and the

nature of the representations processed by symbolic systems. But before we assess each of

these claims, we will first take a closer look at the structure of the ANNs that are most often

cited as examples of connectionist systems.

3.2 A Brief Overview of ANNs

A host of neural network paradigms have sprung up since the work of Kohonen, Werbos,

Rumelhart, Smolensky, McClelland, and Hinton in the early- to mid-eighties that brought

neural network research back to life. As we have seen, an ANN is a collection of simple

processing units connected together to compute a more complex function. The function to

be computed is generally not given explicitly. Instead, the ANN learns the function implic-

itly through the presentation of input patterns. The method of training separates ANNs into

two classes: unsupervised, or those that learn without feedback from a trainer; and super-

vised, those that require a trainer to specify the correct output patterns.
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3.2.1 Unsupervised Learning: The Kohonen Neural Network

The Kohonen neural network, also known as the Self-Organizing Feature Map, is a

common example of an unsupervised ANN. The architecture of the self-organizing feature

map consists of an input vector completely connected to a layer of neurons that form the

map. The connections between the input and the map are weighted, randomly at first, and

the changes in these weights are what constitute learning in the feature map. Usually the

neurons in the map receive lateral connections from one another, and these connections are

either excitatory or inhibitory according to the distance in the map between the connected

neurons. A variety of functions are available for specifying the relationship between the

distance of neurons and the degree of excitatory/inhibitory connections, though the Mexi-

can hat function is the common choice. The learning procedure consists of presenting each

input pattern to the network and determining a winning neuron for the input pattern at hand.

One method for determining the winner is to choose the neuron with weights closest to the

input vector as measured by Euclidean distance. The weights are updated according to

either a winner-takes-all procedure in which only the winning neuron’s weights are changed

by moving the weight vector closer to the input in Euclidean space, or with a neighborhood

function. A neighborhood function makes use of the excitatory-inhibitory lateral connec-

tions, so neurons within the excitatory neighborhood of the winning neuron have their

weights moved closer to the input vector, while those neurons in the inhibitory neighbor-

hood have their weights pushed farther from the input vector. The result of this process is

to produce a topographic map of the input space.

The Kohonen self-organizing feature map has been used for a wide variety of applica-

tions, from robot arm manipulation to pattern classification (Ritter, Martinetz, and Schulten
111



1992; Kohonen 1995). It is the most extensively used ANN by cognitive psychologists and

linguists for modeling semantic and episodic memory. Because it develops prototypes of

the input classes by forming a topographic map of the input, it is thought to be both psy-

chologically and neurally plausible.

3.2.2 Supervised Learning: The Multi-layer Perceptron

The most popular supervised learning technique, in fact the most widely used ANN tech-

nique, is learning by backpropagation of error. Backpropagation networks are Multi-Lay-

ered Perceptrons, that is, ANNs with weighted forward connections from an input layer to

at least one hidden layer of neurons, as well as connections from the last hidden layer to the

output layer. Layers can be fully or partially connected, though neurons in the first hidden

layer usually receive the full input from the input layer. Training patterns are presented to

the network, and each hidden neuron in the first hidden layer computes the sum of its

weights times the inputs, and then a nonlinear squashing function is applied to this sum.

This nonlinearity is important, as it allows the network to classify the input space with non-

linear decision boundaries. The output of each layer is then propagated to the next layer in

the same manner as the input. Once the final output is computed, a trainer supplies the net-

work with the desired output for that input. The error between the actual output and desired

output is computed, usually by simply taking the Euclidean distance between the two,

although sometimes a cross-entropy measure is used. The gradient of this error is then prop-

agated back to the prior layer, and its weights are updated by adding a fraction of the gra-

dient to them. The error for this layer is propagated back to its prior layer, and the procedure

for updating the weights is carried out again. Perceptrons thus have the property of moving
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their weights toward local minima in error space; in practice, they often find the global error

minimum, although there is no guarantee that this will happen.

Backpropagation of error forms the basis of most of connectionism’s successes, and

backprop nets have seen commercial application. Yet, backprop nets are among the least

neurally plausible ANNs, and their apparent ability to mimic human behavior is merely a

corollary of their ability to mimic ANY continuous function. While admitting these facts,

connectionists are generally not troubled by them; as we shall see, connectionism “pr

understood” is more an abstract thesis about the nature of representation than a theo

the specific architecture for simulating minds.

In evaluating the criticisms against symbolic AI, as well as the positive case for

nectionist systems based on these types of neural nets, we will use the “Proper Tre

of Connectionism” formulation of connectionism as advocated by Paul Smolensky (1

Although a decade old now, Smolensky's position still serves as the clearest argum

how connectionism differs from symbolic AI, and why that difference is important.

3.3 The Proper Treatment of Connectionism

According to Smolensky’s view, connectionism is a radical departure from symbolic A

virtue of its novel conception of representations, and not because of a rejection of ru

lowing procedures. Smolensky acknowledges that the rules in a symbolic system mi

implicit in that they are hard-wired, and that such implicit rules do not diminish the po

of the symbolic systems. This acknowledgment disarms the common objection tha

bolic AI is unrealistic because it is unreasonable to suppose that humans have expli

resentations of all the rules that they make use of. Smolensky also acknowledg
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usefulness of symbolic systems for mimicking human rule-following behavior, such as sci-

entific research, game-playing, or logical reasoning.

While symbolic systems are useful for modeling such explicit rule-following behavior,

the connectionist argues that they are entirely inadequate for modeling intuitive processes,

processes in which humans not only do not follow explicit rules, but also do not behave as

if they are following implicit rules. Proponents of symbolic AI generally conceive of cog-

nition as the unconscious following of implicit rules that have a syntax and semantics sim-

ilar to that of explicit rules. Connectionists reject this claim for three reasons: symbolic AI

systems built on these assumptions perform poorly; it is impractical to articulate rules for

domains such as common sense; and a symbolic system built on this principle would con-

tribute little to our understanding of how the brain might accomplish the task.

Smolensky argues that the reason symbolic AI systems perform poorly as models of

intuitive processes is because intuitive information is not stored as symbols bearing seman-

tic content. Symbolic systems require that representations be mapped to symbol tokens in

order for rules to operate over them. Representations in connectionist systems, on the other

hand, are formed as patterns of activations over sets of neurons. Representations are dis-

tributed across the weight vector of a connectionist system, and the weight vector serves to

store more than one representation. Therefore, individual neurons cannot be identified with

individual concepts. Their activity is subconceptual, or subsymbolic. That the two para-

digms are incompatible is demonstrated by attempts to realize one type of system by mod-

ifying the other: symbolic systems used to implement subsymbolic systems (which is how

most ANNs are implemented) no longer allow for a conceptual level analysis of their sym-

bols (or so connectionists argue); subsymbolic systems used to implement symbolic sys-
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tems do not suddenly gain a conceptual level analysis, as their units are still subconceptual

in nature.

Connectionists also make much of the similarity between their systems and neural

architecture, in spite of the significant difference between true neural systems and artificial

ones. In the face of criticism from neurobiologists (see Edelman 1987), connectionists

point out that their systems are higher-level approximations of neural processes, and there-

fore are not required to be perfect replicas of biological systems (Smolensky 1988). Pre-

sumably, connectionist systems also provide the neurobiologist with general principles of

how subsymbolic systems might behave, a contribution neurobiology is in desperate need

of. At the very least, connectionist systems are closer to neural architecture than symbolic

systems are. 

3.4 Why Connectionism Fails to Deliver: Neural 
Implausibility and Its Relevance

While vaguely resembling biological neural networks (BNNS), ANNs are still wildly

implausible as models of real biological brains. Yet, one of their selling points has been that

they are more realistic models of actual cognition than traditional symbolic systems. As

will become apparent, this is true only in the most superficial of senses. The gain in neural

plausibility is minuscule compared to the loss in high-level cognitive capability when

moving from symbolic to connectionist systems. There is an inverse relationship between

the neural plausibility of a connectionist system and the capability of the system to model

high-level human cognition (e.g. natural language processing). The further one goes toward

mimicking the brain, the further one moves away from mimicking human cognition.
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3.4.1 Artificial Neural Networks Don’t Really Resemble Biological 
Neural Networks

An accurate model of a single neuron and its communication with other cells would require

a “vast number of very complicated nonlinear partial differential equations” (Koho

1995, 53). While some of the equations governing neuronal behavior appear to be 

the generation of nerve impulses at the axon hillock1 of each neuron is clearly nonlinea

(Pribram 1991). The neuron-like units in an artificial neural network generally com

only one equation, one that is not always nonlinear in nature. Therefore, connect

have opted for a black box model of neuronal behavior as subsymbol production 

same way that symbolic AI has adopted a black box view of neural networks as symb

ducers. Is this relevant to whether connectionism can achieve AI's goals of creating

ing machines? If Roger Penrose is correct in his assertion that thought is the re

quantum level effects, say, in the microtubules of cells, then it surely is (Penrose 1989

one need not descend to the level of the microtubule to identify possible problems wit

nectionism's oversimplification of neuronal activity. An individual neuron is itself capa

of as many operations as a full-blown connectionist network (Sun 1995). Much of this

cessing is done in parallel, although the propagation of the activation potential is sequ

Does this mean we ought to develop a sub-subsymbolic understanding of cognitive a

This is not simply to extend the connectionist move to the neuronal level (contra

Chalmers 1992), for here the notion of weighted connections has no obvious correlat

might even go the opposite direction, and give single neurons representational leve

1.  The axon hillock is the portion of the neuron where the axon first protrudes from the soma, or cell body.
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pretation. If a single neuron is able to do the work of a connectionist network, then it is plau-

sible that it can, by itself, produce representations. 

But the only appropriate answer to these questions at this point in time is that no one

knows for certain, although the representational interpretation of neurons is likely to be

false. Connectionists argue that the most important aspect of their models is the distributed

nature of the representations they form, so while the behavior of artificial neurons may

diverge from that of true neurons, the global similarity between artificial and true neural

systems in dynamics of processing distributed representations is nonetheless maintained

(Smolensky 1988). But there is reason to believe that this claim can no longer be sustained.

For a time, neuroscientists considered the simple and complex cells in the visual cortex

to be feature detectors for various geometric primitives (such as lines), and that the recog-

nition of objects is a result of composing the outputs of these detectors along a hierarchy of

geometrical complexity (Pribram 1991). As one ascends the hierarchy, neurons are respon-

sible for higher and higher level representations by composing the inputs of the lower lev-

els. This view has since been rejected with the discovery that the behavior of these neurons

is far more complex, corresponding more closely to a Fourier analysis of the input than to

simple line detection, and that visual processing is not only bottom-up, but top-down as

well, with higher levels feeding back to the simple cells (Pribram 1991, 13). Little of this

discovery has filtered into the connectionist program, although it undermines the neural

plausibility of the connectionist methodology of using the output neurons of their systems

as feature detectors, and composing primitive networks for feature detection into more

complicated pattern recognizers.
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The form of communication between neurons in connectionist systems diverges signif-

icantly from the neuronal communication found in biological networks. Connectionist neu-

rons compute a transfer function of the sum of the products of their inputs and weights, and

then pass the output value to the next level. Biological neurons release what were previ-

ously called 'neurotransmitters,' and are now more accurately called ‘neuromodu

(Pribram 1991), at the synaptic gap. These neuromodulators change the behavior

postsynaptic neuron, in essence changing the nature of the function describing the n

behavior. From a connectionist point of view, this would imply that the transfer func

itself has changed. But transfer functions do not change in connectionist networks. Th

dynamics of BNNs do not resemble the dynamics of ANNs at the level of inter-ne

interaction.

Nor is there significant resemblance at the network level. There is no known ana

BNNs to the stored weights used in ANNs. The putative similarity is due to the v

notion of connection strength found in Hebb's formulation of a possible learning

(1949). According to the Hebb rule, biological neurons are thought to have conne

strengths that increase when activity in connected neurons is correlated. While the s

of excitation or inhibition between neurons might seem to fit the bill, these excitation

inhibition strengths are not fixed weights, as they are in most trained-up connectionis

tems. Connectionist systems learn by adjusting weights, and store representations 

weights. Strip the weights out of a connectionist network and place them in anothe

work with the same architecture, and the result is the same formation of represent

What might we strip out of the brain to achieve a similar result? No one knows if there

is an analog to connectionist weights, let alone what it might be. Thus, the plausibi
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ANNs lies in our ignorance of the brain. Explaining behavior by reference to demonic pos-

session was also once plausible in this sense of ’plausible.’

Even if such an analog were to exist, the dynamics of modifying biological neural

weights would differ vastly from the methods used to train the most successful ANNs.

While connectionists can lay claim to a number of unsupervised learning algorithms, back-

propagation networks are the most successful of the neural network architectures. This is

unlikely to change for the simple reason that backprop nets are universal function approx-

imators that can be trained in a manageable period of time. Yet, the backpropagation learn-

ing algorithm in no way resembles what is known about learning in the brain, nor is any

future discovery likely to change this fact. The reason is that backpropagation learning

requires that each output neuron be supplied with the correct value of its output for each

member of the training set. This would mean neurons in the brain would have to know what

they are supposed to learn before they learn it. Some researchers have suggested that exam-

ples of human supervised learning circumvent this difficulty. But in these cases, humans

are given the true classification of the examples at the level of inter-personal communica-

tion: a teacher says ’bear’ when showing a picture of a bear. Backpropagation learning

requires the true output to be given at the neuronal level, which means biological neural

nets must have some way of breaking up the correct output into the correct signal for each

output neuron. Lacking a shred of evidence, this suggestion is sheer speculation. In any

case, there is no known neural mechanism for backpropagating errors. The very notion of

backpropagating errors suggests neural information transmission rather than the neuromod-

ulation that forms the basis for inter-neuron interaction in BNNs.
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The dynamics of connectionist systems therefore show no significant similarity to the

dynamics of biological neural networks. What remains are the possible similarities in gross

functionality and the nature of representations. If we view connectionist systems at the level

of gross functionality, however, they lose their uniqueness. It is not necessary to implement

a connectionist system to achieve similar functioning. One method of mimicking the

behavior of ANNs is the use of probability density functions. In fact, Richard and Lipp-

mann (1991) have proven the multi-layer perceptron, the most widely used ANN, to be an

a posteriori probability approximator. MLPs trained as pattern classifiers compute the

probability of an input’s class given the input itself. The MLP only has the training set by

which to estimate this probability. Direct methods of estimating the probability can be used

in place of an MLP. Viewing the MLP as an a posteriori probability estimator, we find it is

easily replaced by direct probabilistic methods. The parallelism of the MLP’s computation

adds nothing significant to the task of pattern recognition other than a speed-up in compu-

tation time if implemented on a machine capable of parallel processing; the MLP that does

perform better than current statistical techniques on some pattern recognition tasks, the

Time Delay Neural Network, is even one step further than the general MLP from neural

plausibility due to its shared weights. All that is left to the connectionist is the claim that

the distributed representations in connectionist networks mimic the distributed representa-

tions in BNNs.

In addition to the biological implausibility of connectionism, there is the underlying

assumption in this movement that cognition is information processing that must be con-

fronted. Although in disagreement with LOT theorists about how mental cognition occurs,

they are in general agreement with their antagonists concerning what cognition is. The con-
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nectionist believes that the mind/brain constructs representations of the world, stores this

information, and retrieves it to process it for the sake of producing desired behavior. Of

course, no connectionist network has ever done this without some form of supervision or

intervention, so it is unclear why we are to believe that they are adequate models of the

mind/brain. A few examples of the failure of connectionist systems to act as mind/brains,

that is, as stand-alone systems creating and interpreting their own representations, will be

provided to substantiate this claim. Specifically, we will investigate Herbert Simon’s (

and Simon 1993) claim that Navlab and the neural network ALVINN that was the 'bra

this system think, as well examine the use ANNs have been put to in cognitive psych

But before taking on these connectionist applications, we take a closer look at what it 

for a connectionist system to have distributed, 'nonsymbolic' representations.

3.5 Symbols and Representations: The Subsymbolic 
Fallacy

Whereas Smolensky’s connectionism identifies the distributed nature of representat

connectionist systems to be what distinguishes itself from symbolic AI, some conne

ists (Churchland and Sejnowski 1989) have pointed to the analog nature of the comp

carried out in the connectionist processing units as indicative of these networks g

plausibility over symbolic systems. Notions such as 'nonsymbolic computation' have

invented to distinguish the operations of artificial neural networks from the symbolic 

putation of traditional AI systems (Stufflebeam 1998). Here, ‘symbolic’ is meant in

syntactic sense (Smolensky 1988). Yet, when connectionists attempt to defend thi

tion, they revert to the semantic sense of symbol, defining a symbol as a token that ca

trarily designate, whereas analog signals lack this property (Harnad 1990; Touretzk
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Pomerleau 1994). A second, syntactic property is also referenced when distinguishing

between analog signals and symbols, namely that the latter are recursively composable via

rules.

These distinctions are meant to answer a simple objection to the symbol-nonsymbol

distinction. The floating-point operations found in artificial neurons can be, and often are

(for the sake of speed), translated into integer operations. In fact, all neural networks imple-

mented on digital computers are digital operations; vectors of 1s and 0s represent all of the

floating-point operations in such neural networks. Thus, this supposed distinction appears

to hold only if connectionist systems are implemented on analog devices. However, if the

composability constraint applies to connectionist systems implemented on digital comput-

ers as well, then these systems are also nonsymbolic. 

The argument for the noncomposability of analog signals seems to rest, however, on the

assumption that composition requires explicit rules. Thus Touretzky and Pomerleau argue:

Analog numerical representations violate both of the above requirements for a physical
symbol system. First, they lack the capability of arbitrary designation, because they are
constrained to maintain an analogical relationship to the thing they represent. Consider,
for example, the homomorphism between voltage levels in a thermostat and tempera-
ture values in a room. Each voltage level is a distinct analog pattern, but not an arbitrary
one. And relationships between analog patterns (e.g., that voltage level x denotes a
warmer room state than voltage level y) are not defined explicitly by symbol structures
or symbol manipulation rules. Rather, they are predetermined by the causal structure of
the thermostat sensor-the source of the analogy between voltage and temperature.
(Touretzky and Pomerleau 1994, 346)

This contradicts Smolensky’s view that implicit rules may be hardwired into a system

part of its causal structure) that does not possess explicit rules, yet the system still b

sidered a symbol system. Furthermore, Touretzky and Pomerleau argue specifically

is analog systems that lack the ability to combine or compose signals as if they were

bols:
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Analog representations also appear to lack combinatorial power. One may speculate
about uses for fractal structures or chaotic attractors in knowledge representation
schemes, but it is not evident to us how to achieve useful compositionality in a low
dimensional, analog numerical system. (Touretzky and Pomerleau 1994, 346)

What is missing from connectionist accounts is a clear statement whether analog systems

are truly special, and therefore a renunciation of all digital implementations of connection-

ist systems as instances of a new paradigm in cognitive science.

The symbol-subsymbol distinction is not the same as the symbol-nonsymbol distinc-

tion, relying on different notions of ‘symbol’. The latter is a restatement of the analog

ital distinction, viewing computation over analog signals to be somehow different in

from computation over symbols. The former view is that symbols are not merely syn

items, but embody representations, and therefore already bear semantics. On the

view, connectionist systems differ substantively from symbolic systems because the

sentations are distributed, hence the operations of individual units cannot themselves

of a conceptual level analysis. Thus binary neural networks count as connectionist sy

whereas according to the analog-digital distinction they do not. 

So why does it matter whether representations arise from subsymbolic processes

than being directly mapped to/from symbols? There are a number of reasons. Presu

this is how it happens in real brains (Smolensky 1988; Churchland 1995). More sp

cally, the connectionist argues that brains store and retrieve representations in ways 

patible with symbolic AI systems, but quite like connectionist systems. To establish

point, connectionists must both provide evidence that brains store and retrieve repre

tions as connectionist models describe and construct working connectionist sy

according to this model. I have already presented evidence against the first of these 
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I will now show that connectionist models themselves do not live up to the connectionist

paradigm.

The subsymbolic hypothesis, as stated by Smolensky, is that connectionist systems do

not “admit a complete, formal and precise conceptual-level description” (Smolensky 

12). Even symbol systems used to implement subsymbolic systems no longer adm

conceptual-level description. But this is to overstate the conceptual opaqueness of c

tionist systems; not all connectionist systems are opaque. For example, an ANN th

a hidden layer of neurons equal in size to the data set it is meant to classify would 

training one neuron to react strongly for each member of the data set—in essence, c

a look-up table. The hidden neurons in such a network admit of a clear conceptua

description: they are representing exemplars. Furthermore, the output neurons then

of a conceptual level analysis: each output neuron, representing a class of outputs,

classifies a portion of the look-up table. 

This kind of network is an extreme example, one that would never be used eve

look-up table were desirable. It is equivalent to a localist network, the type of networ

uses neurons to represent concepts and produce output that consists of weighted c

In distributed networks, the sizes of the hidden layers of ANNs are always smaller th

size of the training set, for it is desired that the hidden layers generalize on the data 

not merely encode for particular instances. Hidden neurons become feature det

When the network is simple enough, the particular feature being detected by a given 

can often be discovered, as has been done with the neural network ALVINN's1 hidden neu-

rons (Pomerleau 1992). An individual weight might not be able to given a conceptual

description, but there is no reason that feature detecting hidden neurons cannot. An
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the hidden neurons of a network cannot be analyzed, this is largely due to the complexity

of the network, and not any magical opacity that necessarily accompanies distributed rep-

resentations. Better analytical tools may eventually clear away this opacity; connectionists

certainly have not given any reason to believe it impossible. Even the contribution of a

single weight to the feature detection carried out by a neuron may yield to analysis-in fact,

there are instances where it does. Simple character recognition networks, such as a single-

layer perceptron trained via the Least Means Squares algorithm, yield weights that act as a

fuzzy template to be matched against. A weight is used to detect a particular feature in its

corresponding area in the input space. Analysis of weight contributions to more complex

networks is not yet possible.

If the function of a weight or hidden neuron can be discovered, then this weight or

neuron can serve as a symbol for a system that reads off its value and draws conclusions as

to what features are present. This is already done with the output neurons of connectionist

systems. In fact, the outputs of connectionist systems are generally treated as symbols. One

method for output-to-symbol translation is simply assigning a label/symbol to each output

neuron, and an input receives the label of the output neuron with the strongest activation on

that input. Therefore, such connectionist systems always admit of a conceptual level anal-

ysis at some point in their operation. In fact, a general rule seems to be that the more sym-

bolic post-processing, the better the performance. Examples of this abound in handwriting

1.  ALVINN, the Autonomous Land Vehicle In a Neural Network, is the creation of Dean Pomerleau and 
Todd Jochem, researchers at Carnegie Mellon University. It is a multi-layer perceptron that was trained by 
means of backpropagation to autonomously drive a vehicle on a variety of road types, including both single 
and two-laned highways. ALVINN’s success at this task is considered a major achievement for neural net-
works, having driven a vehicle 96% of a 70 mile road trip, with the human supervisor taking over only for 
passing and on/off ramp access (Pomerleau 1992). Recent developments have even allowed for passing 
(Jochem, Pomerleau, and Touretzky 1995).
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and speech recognition systems (see Waibel et al. 1989). Working connectionist systems

are hybrid systems, combining a parallel processor used to approximate functions and sym-

bolic processors used to apply the outputs to the domain at hand.

So there are two problems with Smolensky’s account. Smolensky acknowledges that a

complete, formal and precise description can be given of the elements of connectionist sys-

tems, those components that operate at the subconceptual level. However, as has been

shown with ALVINN, these elements also permit of a conceptual level analysis. It would

seem then that connectionist systems are not subconceptual processors. A similar confusion

arises in Touretzky and Pomerleau’s account. On the one hand, Touretzky and Pomerleau

argue that the hidden neuron activity patterns have a conceptual level interpretation as

meaningful as that found in a symbol system:

[ALVINN’s] patterns are not arbitrarily-shaped symbols, and they are not combinato-
rial. Its hidden unit feature detectors are tuned filters. Their activation denotes the pres-
ence of visual features in the view ahead of the vehicle, and analysis of their input
weights and response properties reveals that they are responding to objects such as road
edges and lane stripes... Greeno and Moore (1993, 54) claim there is no semantic inter-
pretation of these hidden unit activity patterns. But their response, albeit analog in
nature, is just as meaningful as the discrete output LANE-STRIPE-DETECTED.
(Touretzky and Pomerleau 1994, 349)

Then Touretzky and Pomerleau go on to endorse the PTC view of hidden unit activity:

We cannot assign concise meanings to elements at this lower level. Whatever phrase
we choose would correspond to a concept structure, not a symbol. Except for those
symbols that serve as names for familiar concepts, primitive symbol tokens would
appear to be indescribable. A comparable notion exists in the connectionist literature,
where “subsymbolic representations” are postulated whose components are “mic
tures.” The subsymbolic level is really a subconceptual level . . . (Touretzky and Po
leau 1994, 349)

Either we must conclude that symbols such as LANE-STRIPE-DETECTED are really

conceptual, or that the hidden layers of connectionist systems are capable of a con
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interpretation similar to that of symbols. It is not clear from (Touretzky and Pomerleau

1994) which it is to be.

Second, the claim that the network level does not admit of a conceptual level analysis

is questionable given that the elements of the network may be assigned conceptual-level

interpretations, and that the symbolic interpretation of network outputs is standard practice

among connectionist researchers. The elementary concepts only seem to disappear in the

network because of the nonlinearities of typical connectionist systems. Even if the hidden

neurons act as feature detectors, this precise interpretation disappears in their interaction

with the output neurons. Or at least it seems to. The unspoken assumption present in such

claims is that a rule cannot be a nonlinear function on concepts; otherwise, connectionist

systems would simply be rule-based systems. But once we have a conceptual level analysis

of the hidden neurons, their connection to the output neurons is primarily linear. The usual

squashing function (tanh or the logistic function) does nothing to change the ordering of the

output neurons’ strengths: the neuron with the highest activation before the squashing func-

tion is still has the highest activation after application of the squashing function. So the

introduction of this nonlinearity does not prevent a rule-based interpretation of the hidden-

to-output neuron relationship, and therefore does not prevent a conceptual level analysis of

network behavior. Finally, if the network’s behavior is too imprecise or informal, how is it

that the network can fit in a with a standard symbol system? Is something lost when we

assign a symbolic interpretation to the network’s behavior? 
127



 away

's con-

ecause

a con-

ch of

stems,

bol,

he rep-

usally

ctions

 do not

vel of

. It is at

tations

rinsic

luded
3.6 Why the Causal Efficacy of Representational 
Structure Is Not a Form of Exceptionalism

David Chalmers has argued that connectionist systems possess an internalist semantics

lacking in traditional symbol systems (Chalmers 1992). The internalist view of semantics

is that meaning is determined by the internal properties of mental events and not by their

extension to the external world. In Chalmers’s view (a view he has somewhat backed

from), this exceptional aspect of connectionist systems insulates them from Searle

tention that programs cannot have semantics.

According to Chalmers, connectionist systems possess internalist semantics b

the structure of their representations is in itself causally efficacious. The structure of 

nectionist representation is the pattern of activity over the nodes of the network. Ea

these nodes plays a causal role in producing the representation. Unlike in symbol sy

where any arbitrary configuration of bits could be used for a particular atomic sym

changing the pattern of activity over the nodes in a connectionist system changes t

resentation. In Chalmers’s view, the pattern of activity in a connectionist system ca

determines the nature of the representation. A similar contention is explicit in the se

from (Touretzky and Pomerleau 1994) quote above.

Searle (1980) contends in his Chinese Room argument that syntactic elements

bear semantics. This suits Chalmers’s reading of connectionism, because the le

syntax in a connectionist system, the subconceptual, is not meant to bear semantics

the network or representational level that semantics emerges. At this level, represen

have an intrinsic structure built up out of the subconceptual level, and it is this int

structure which determines their meanings. It is for this reason that Chalmers conc
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that connectionist systems are not vulnerable to the Chinese Room argument as symbolic

systems might be (if we assume that Searle’s intuitions are correct). The vulnerability of

symbolic systems is that their symbol tokens bear no intrinsic meaning:

For all intents and purposes, a computational token is a featureless chunk, coming only
with an arbitrary label that serves only to distinguish it from other computational
tokens. Nothing intrinsic to the ELEPHANT token makes it any more closely related to
the elephant concept than to the apple concept. (Chalmers 1992, 13)

Being embedded in a system, that is, having relations to other tokens, does not suddenly

imbue an otherwise meaningless token with semantic content. A Searlean would view this

as mere syntactic linking of meaningless tokens.

If we accept Chalmers’s account of connectionism, namely that subconceptua

ments do not bear semantic content, and that the semantics of connectionist represe

derive, if at all, from their intrinsic structure, we must conclude that connectionism

least as vulnerable to the Chinese Room argument as traditional symbolic systems. 

ers’s characterizations of connectionist systems mean that the derivation of their rep

tations' semantics cannot be from any semantic content at the subconceptual lev

‘causal efficacy’ of the subconceptual level must do all the work. But Chalmers has

characterized the nature of connectionist representations. 

First, it is not entirely true that the activation patterns of a trained-up network cann

altered without altering the representation. This is assuming a 1-to-1 correspon

between patterns and representations, a correspondence that does not always h

example, Kohonen networks yield neighborhoods of neurons whose activation yie

same representation.
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Second, it is deceptive to characterize the relation between gross network behavior and

neuron behavior as a relation between representations and subconcepts. The relation is one

of output to the function that yields the output. It is a purely syntactic relationship. The

output of the network is as meaningless as any symbol token in a traditional symbol system.

Its rich intrinsic structure is similar to the rich intrinsic structure of a sentence: if you

change the syntactic elements making up the sentence, you change the syntax of the sen-

tence itself. Furthermore, if the syntactic elements making up the sentence do not have

semantic content, the sentence itself does not.

So even if the output of a connectionist system is not arbitrary because it is determined

by the nature of the network, its semantic interpretation is arbitrary, assuming we are con-

sidering internalist semantics only. A different configuration of activation patterns could

have been formed on the same input if we were to train up a second network. What is

thought to give connectionist networks their semantic content is not merely the constitution

of the network, but also the semantic content of the input. If we were to train a network on

images of animals, and output neuron 1 fired more strongly than others for images of ele-

phants, then output neuron 1’s activity (and its underlying cause within the network) might

be thought of as a representation of elephants. Take away this external semantic interpreta-

tion of the input, and there is no reason to consider the activity of the network to also have

a semantic interpretation. The network is merely computing a function on the input. This

function could be computed with or without the underlying neural network; the network is

useful primarily in cases where we cannot analytically discover the function to be com-

puted.
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Thus, connectionist systems do not have a special internalist semanticity that symbol

systems do not bear. In some cases, they have a richer syntactic structure. Merely compli-

cating the syntactic structure of a representation does not thwart Searle’s Chinese Room

argument, if the argument has any bite at all.

3.7 Connectionist Systems Don’t Really Possess Externa
Semantics

I have previously argued that, contrary to connectionist claims, the ‘subconceptual’ a

of connectionist systems can be given external semantic interpretations, that is, an e

observer can identify correspondences between neuron activity and features in th

work’s input. I have also argued that the activity patterns of connectionist networks d

bear semantic content by virtue of an internal semantics. Thus, if a connectionist s

does have semantics, it is due to its external connections to the world. In this section, 

that connectionist systems are not exceptional by virtue of external connections: If

bolic systems do not have semantics by virtue of external connections, then connec

systems do not either. This will be a continuing theme throughout this chapter, one 

I will return to when examining actual connectionist networks.

The case for connectionist exceptionalism with regard to externalist semantics d

from the ability of connectionist systems to automatically detect features and gene

from their given data sets. As has been noted, the hidden neurons of ALVINN were d

ered to be detecting sets of parallel lines of varying orientations in images. Having

trained on a representative sample (more on this in later sections) of roads, ALVINN

able to generalize from the relation between sets of parallel lines seen to the appr
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steering curvature when presented with novel road scenes. Thus, ALVINN, and connec-

tionist systems in general, form their representations by discovering in the input from the

external world actual relations between properties of the input. While a supervisor may pro-

vide a connectionist system with the correct value for its output during training, the super-

visor does not tell the system what features it is to discover in the input, nor how to

generalize from these features. It would seem that the homunculus fallacy does not plague

connectionist systems, at least regarding the representations formed by the hidden neurons.

The ability of connectionist systems to automatically form representations of data and

to generalize to novel instances, however, does not imply anything about the semanticity

of these representations. A connectionist system will do this regardless of whether the input

signal bears semantics. The representations formed in such a case do not suddenly gain

semantics; they are generalizations about meaningless signals.

Even if we were to concede semanticity to connectionist representations, this would in

no way save the connectionist enterprise. As is conceded by Touretzky and Pomerleau

(1994), the connectionist system is able to do little with the representations it forms: it

simply is mapping input to output. Touretzky and Pomerleau theorize that a symbol system

would have to be added on top of any connectionist system to get the full range of repre-

sentational behavior found in humans, because true (subsymbolic) connectionist systems

are incapable of the manipulation of (representational) symbols that humans do with ease.
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3.8 Why Connectionism Is Not an Implementation of 
Heideggerian Principles

Hubert and Stuart Dreyfus have argued that connectionism is a novel development in cog-

nitive science, because it represents a shift away from the Cartesian, analytical AI that

sought to reverse engineer organisms in order to replicate their functioning, and is a move

toward a “synthetic” or holistic approach to understanding consciousness. By focusi

building physical symbol systems, early AI researchers were trying to isolate the a

elements of thought so that they could then build a mind piece-by-piece. As Dreyfu

Dreyfus state it:

AI can be thought of as the attempt to find the primitive elements and logical rela
in the subject (man or computer) that mirror the primitive objects and their relation
make up the world. Newell and Simon's physical-symbol system hypothesis in 
turns the Wittgensteinian vision (which is itself the culmination of the classical r
nalist philosophical tradition) into an empirical claim and bases a research-progra
on it. (Dreyfus and Dreyfus 1988, 311)

At the same time, a movement to model the brain's functioning, led by Frank Rose

had begun the first perceptron research. Dreyfus and Dreyfus see this as a branch

the history of AI, when the choice was between an analytic approach (what is now re

to as traditional or symbolic AI) and a synthetic or holistic approach. Due partly to the

dents of governmental funding, and partly to the devastating critique of perceptrons w

by Minsky and Papert (1969), the former won the day and held sway for decades sin

For Dreyfus and Dreyfus, this was not merely a clash between computer scie

trying to get funds for their research. It was a battle between heirs of disparate philoso

traditions. On the one side was symbolic AI as heir to the early Wittgenstein and rat

ists, on the other was the nascent form of connectionism as heir to the later Wittge
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and early Heidegger. According to Dreyfus and Dreyfus, the later Wittgenstein and the

early Heidegger had severe conclusions for the plausibility of symbolic AI:

Both these thinkers had called into question the very tradition on which symbolic infor-
mation-processing was based. Both were holists, both were struck by the importance of
everyday practices, and both held that one could not have a theory of the everyday
world. (Dreyfus and Dreyfus 1988, 320)

For the Dreyfuses, the foundering of symbolic AI on the difficulties faced in constructing

adequate representations is evidence that the later Wittgenstein and early Heidegger were

correct. Similarly, they consider the move in cognitive science toward connectionism to be

another proof that these two philosophers were correct, because connectionism offers a

holistic account of representation and thinking. Specifically, connectionism views informa-

tion as stored ubiquitously in the network rather than at specific nodes, meaning informa-

tion must be ’evoked’ rather than retrieved. Connectionism does not require that the

constituent parts of the network be analyzable in terms of features recognizable to a human,

and it does not require that the researcher specify the rules by which the network may gen-

eralize about inputs it has not been trained on.

Still, Dreyfus and Dreyfus view connectionism as not quite holistic enough. Connec-

tionists, in their opinion, still retain the deplorable habit of trying to analyze what their net-

work is doing, not realizing what Wittgenstein and Heidegger had to say about such a

practice. Nonetheless, connectionism represents to them a substantial move toward the

holistic approaches of these two philosophers, and a repudiation of the analytic approaches

of the symbolic AI researchers.

Dreyfus and Dreyfus have misconstrued the implications of connectionism. If a move

toward holism would validate the later Wittgenstein and early Heidegger, and a move in the
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opposite direction undermine their philosophies, then connectionism represents the most

promising avenue for refuting the later Wittgenstein and early Heidegger. Connectionist

approaches are indeed often used in domains where symbolic AI has had little success, but

merely to achieve the success symbolic AI sought. One such area is pattern recognition.

The best function for separating patterns in a way similar to how humans categorize is gen-

erally unknown. If an ANN can learn the relationship between inputs and outputs, an anal-

ysis of what the ANN is doing often yields the function being sought. The ANN can then

be scrapped if it is not the most efficient method for applying this now known function. One

example of this process of learning opaque functions through neural nets is the Navlab

system at Carnegie Mellon. Navlab is an autonomous driving system, with platforms of a

van and military HumVees. Originally, the neural network ALVINN learned the functional

relationship between road inputs and driver reactions. Once it had done this, Navlab

researchers analyzed ALVINN’s hidden nodes and discovered the features it was keying on.

RALPH, a non-neural network system that applies the function discovered by ALVINN,

has since been able to replace ALVINN (Pomerleau 1995). 

Dreyfus and Dreyfus are correct that ANNs do not require an analysis of their hidden

nodes, but analyzing hidden nodes is the direction connectionism is heading. While

researchers generally do not use backpropagation networks to model the brain, the neural

implausibility of these networks having been evident since their inception. Instead, these

ANNs yield solutions to problems that otherwise cannot be discovered by means of the ana-

lytic tools at hand, and these solutions are themselves analyzed. The point of a hidden layer

of neurons is not to reduce the analyzability of a solution. Quite the contrary, it is to increase

its analyzability. The hidden layers of MLPs and RBFs serve the purpose of casting the
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input space into a higher-dimensional space to improve the separability of the patterns.

Analyzing the activity of hidden neurons then allows the researcher to determine what fea-

tures of the input the network is keying on in making its classification. So while a back-

propagation network might not be neurally plausible, it can nonetheless provide researchers

with insights into what BNNs are doing to the inputs they receive. So if connectionism does

not require that the hidden nodes be analyzed, it does encourage this. In any case, holistic

accounts tend to claim that the processes underlying, say, commonsense cannot be ana-

lyzed, not that if we close our eyes to the possibility of such analysis, we then have achieved

holism.

An example of the analytical usefulness of ANNs is the work on object position loca-

tion in monkey brains accomplished by Richard Anderson’s lab at MIT in conjunction with

the ANN researcher David Zipser (Barinaga 1990). By training an ANN to locate an object

on the basis of retina and eye position, and then analyzing the hidden nodes of the network,

these researchers were able to make predictions about how the monkey’s biological nets

would respond to tasks similar to those put to the ANN. When the two showed similar

activity, the researchers could then formulate theories as to what neurons were involved in

the location task in the monkeys’ nets. The ANN does not prove anything about how the

brain functions, but does suggest possible routes for analyzing its activity. Rather than pro-

viding a holistic approach to modeling cognition, ANNs are tools for breaking through the

apparent holism of the mind.
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3.9 Why Connectionism Doesn’t Really Aid Cognitive 
Psychology

Over the past decade, many cognitive psychologists have turned to connectionism to pro-

vide the computational tools for understanding the mind. Because cognitive psychologists

regard the neural plausibility of these models as secondary to whether the models capture

aspects of overt cognitive behavior, the backpropagation network finds widespread use

alongside more “plausible” nets such as the SOFM. The connectionist models devis

cognitive psychologists are part of an effort to model cognitive behavior through piec

simulation of mental computation: the modeler will pick out a specific cognitive funct

such as categorization, and devise a system specifically to simulate human performa

this function. The drawback of these models is that they capture only a small piece o

nitive behavior without developing how these processes would fit into a complete sy

In what follows, we will show that these piecewise models cannot be fit into a com

cognitive system, because they rely on human interaction for their behavior to be me

ful to such a system. As a demonstration of this point, we will examine one such m

namely Philippe Schyns concept-acquisition network (Schyns 1991), a model that m

use of a neural net that is often, and erroneously, thought to avoid the need for a 

interpreter: the SOFM.

3.9.1 Schyns’ Work on the Nature of Concept Acquisition as Prototype 
Formation

Cognitive psychologists have recently debated the merits of two models of concept 

sition and categorization: prototype theory and exemplar theory. The former holds th

egories are stored as statistical means, or prototypes, of the range of inputs falling
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each category (Anderson 1991). New inputs are categorized according to their distance in

feature space from the stored prototypes, and the new input is assigned the class of the clos-

est prototype. Exemplar theory holds that the mind stores a multitude of instances or exem-

plars, rather than one prototype, for each class, and categorization is a competition between

sets of exemplars (Nosofsky 1986). The newly categorized input can then itself serve as an

additional exemplar, with the number of exemplars being constrained by memory limita-

tions. To further establish the plausibility of prototype theory, Philippe Schyns has pre-

sented an ANN model of concept acquisition that is compatible with this theory, using a

SOFM neural network and a self-supervised backpropagation (SSB) network.

Schyns separates the concept-acquisition problem into two tasks: categorization and

naming. The SOFM is used to categorize the inputs, and then the SSB-net assigns the inputs

their appropriate labels. Inputs to the SOFM are idealized digital representations of real-

world objects. These representations are black-white drawings in 10x10 arrays of pixels,

with each one derived from a prototype drawing. Schyns uses prototypes for the categories

’dog’, ’cat’, and ’bird.’

Inputs are generated by randomly altering 1-10 of the pixels lying around the contour

of the shape, either turning them “on” (coloring them black) or “off” (coloring them wh

depending on their current state. To prevent any category from being defined by sing

essary and jointly sufficient features, the decision to turn a pixel “on” or “off” was m

probabilistically (changing the state of a selected pixel occurred with a probability of 0

The network of 10x10 neurons was then trained on a large sample of these indi

instances. As is the case with SOFMs, the network formed a topographical map of th

space. The output of this SOFM was then sent to the SSB net that had been trained a
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tern associator. A pattern associator is simply a network that associates an input pattern

with an output pattern. If the associated output is the same as the input, then the network is

an autoassociator, the type of associator used by Schyns. The SSB net is therefore simply

trained to take as input the category indicated by the SOFM and return the label for that

category. Schyns calls this the naming of the category.

Schyns’s network shows a variety of the characteristics of categorization predicted by

prototype theory. Prototype theory predicts that the closer the input is to the stored proto-

type, the faster the categorization process will be. Schyns’s network demonstrates just such

a prototype effect. Also, when Schyns introduced a fourth category, that of ’wolf,’ and had

the network relearn the categories, the network classified wolf-inputs as closer to ’dog’ than

to ’bird’ or ’cat.’ This is to be expected given that the prototypes of ’wolf’ and ’dog’ share

more features than ’wolf’ and ’bird,’ or ’wolf’ and ’cat.’ Furthermore, Schyns argues:

Much like children’s overextension errors and their eventual corrections, in this model,
when the new category wolf is learned, conceptual interpretations of its exemplars are
labeled as “dog.” At this stage, the lexical item “dog” is overloaded. Its set of refe
is overgeneralized because it comprehends not only the dogs, but also the wolves
ever, the conceptual map interprets wolves distinctly from the dogs, so a new lab
be associated to the wolf area of the map. When this new category term is learn
initially overextended category name “dog” narrows down to the correct set of r
ents, whereas “wolf” refers to the remaining referents. (Schyns 1991, 488)

A further experiment by Schyns was designed to show how hierarchical network

handle subcategorization in a way consistent with prototype theory and the psychol

data concerning humans' ability to subcategorize. Schyns trained two separate SOFM

presented with more instances from the set of dog, the other with more instances fr

set of bird. The naming network for the first SOFM is trained on all the possible n

(within a restricted set for the experiment) of types of dogs, as well all the possible n

(again, a restricted set) for types of birds. The naming network for the second SOFM
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is trained on a few of the bird subcategory names while still receiving full training for dog

type names. Each main category has four subcategories in this experiment. Early in the

training, each SOFM organized in such a manner as to discriminate between categories,

with the majority of the neurons being assigned to each SOFM’s dominant training class,

but showed little discrimination among subcategories. According to Schyns, this corre-

sponds to data indicating that medium-level concepts emerge before basic-level concepts

in infants (Schyns 1991). At the end of the training, the subcategories had their own weight

vectors. The naming network for the SOFM that was expert in the bird category had only

one subcategory label, and so showed a quicker response time for naming the output of the

SOFM than the naming network for the dog expert. Each expert showed more discrimina-

tion within the category it was expert in than in its novice category. Schyns argues that this

is consistent with Rosch’s hypothesis that experts have more low-level concepts tha

ices do (Rosch et al. 1976).

Schyns has developed a model which, he argues, correlates well with data abo

cept-acquisition in humans. This model, however, bears the weaknesses of all conne

models for cognitive psychology, weaknesses I will now examine.

3.9.2 The Invisible Hand of the Researcher: A Critique of Schyns’ Model

That a SOFM would bear resemblances to the categorization behavior predicted by

type theory should surprise no one. The SOFM acts as a clusterer, with neurons in 

corresponding to cluster centers. A similar result could be achieved with a non-neura

nique, such as k-means clustering. Adding new categories can also be handled by va

of k-means that split clusters according to a metric such as intra-cluster scatter. So 
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of an ANN has not increased the explanatory value of Schyns’s model. Furthermore, a sim-

ilar SOFM could be used to validate exemplar theory. Simply increase the number of neu-

rons in the map to at least the size of the input set, and the SOFM is likely to assign one

neuron to each member of the input. If it does not, simply increase the number of neurons.

Clustering might still occur, but then again, it might not. So how does the SOFM validate

prototype theory over exemplar theory?

The use of a SSB network for naming is similarly spurious. The SSB autoassociator

learns through supervision-so why not just hand label the output of the SOFM? The name

’self- supervised backpropagation’ is deceptive, in that it might lead one to think that a form

of self-organization is occurring during training. However, the network is merely hard-

wired to supervise itself. In other words, the designer of the net predetermines the true label

of the input to be supplied to the output neurons. (But what if our genes do a similar prede-

termination? Yes, what if, but first give us reason to believe this.)

Schyns’s accomplishment is to use a prototype-extracting neural network to extract pro-

totypes. The psychological data that supports prototype theory will undoubtedly resemble

the behavior of the network in some sense. But even if his network perfectly mimics the

human ability to categorize, there is no reason to believe that he has discovered the mech-

anism underlying the human activity. The reason is that such a network could never do what

it does without human intervention. Therefore, Schyns, like all other computationalists, has

not given an account of how such a system might fit into a complete cognitive system with-

out a human puppeteer still pulling its strings.

The human puppeteer emerges first in the presentation of the input. Humans are capable

of developing ad hoc categories: e.g., all chess pieces except the kings and all oranges
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together form the ad hoc category ’phlegs.’ Schyns’s input, however, is structured such that

there are inherent similarities within classes of inputs, and these similarities are what the

SOFM is keying on. The SOFM is incapable of forming clusters of data that lack an inher-

ent similarity. So at best, Schyns is modeling categorization of natural kinds. As we shall

show later regarding ALVINN, special preparation of the input is a hallmark of connection-

ism (and often the essential part of getting a connectionist net to do what one wants). 

Human intervention continues with the interpretation of the SOFM’s responses to each

input. Once the SOFM has concluded its training phase, the network can then be used to

classify data. When presented with an input sample, the network produces a pattern of acti-

vation across its map, with some neurons responding strongly, some weakly and some not

at all. The researcher must then decide upon a threshold for what degree of neuronal activity

counts as a category response by the network. An alternative is to count all activity as a

desired response, and to consider the degrees of response to be degrees of certainty or

degrees of membership in a class. While desirable for capturing certain ’fuzzy’ aspects of

human thinking, it is not a general solution: a poodle does not belong to the class of dogs

with certainty 0.9 and to the class of birds with certainty 0.1. What cognitive modelers need

is a mechanism for autonomously deciding what class an input belongs to-the very thing

they are supposed to be modeling!

3.9.3 How Connectionism Hinders Cognitive Psychology

Connectionism provides the cognitive modeler with powerful tools (too powerful com-

pared to actual neurons) for mimicking cognitive functions, yet connectionist systems show

little of the human capacity for perception and cognition. No connectionist system even
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approximates human visual capabilities, let alone reasoning skills. How do we account for

this disparity?

One reason that a connectionist might give is that we do not fully know what functions

the human mind uses, and so we cannot construct adequate models, connectionist or other-

wise, of these unknown functions. But a function can be defined by its input-output map-

pings, and although cognitive psychologists do not have a complete set of such mappings

for any cognitive function, they do have extensive data sets. MLPs trained via backpropa-

gation should be able to approximate cognitive functions given these data sets. Yet they

cannot.

Two possible reasons for this failure are that the brain might not be executing compu-

tational functions in the first place and that the functions that any particular biological

neural network carries out might be dynamically changing. The first possibility rules out

connectionist systems in principle. The second rules out connectionism in its current incar-

nation, and likely in any incarnation, though any such bet is risky.

To model dynamically changing functions requires a system to be capable of both exe-

cuting each of the functions the system oscillates between and also executing the function

that switches between these functions. This presents several obstacles to an ANN. First, the

typical ANN is incapable of learning more than one distinct function, one reason being

interference effects (Ratcliff 1990). Once a function is learned, such as by backpropagation,

it is embedded in the system in the form of the adjusted weights. Second, collapsing the two

types of function into one function means creating a new, discontinuous function. ANNs

that act as universal function approximators are only able to approximate continuous func-

tions to an arbitrary degree. Switching between functions would require an explicit rule,
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which would violate a connectionist constraint. Third, there is little by the way of connec-

tionist theory on how feedback from other systems should be incorporated in a given con-

nectionist system. Presumably, volition is a form of feedback that changes what the BNN

is currently computing (for example, the decision to create the ad hoc category oranges and

chess pieces when there is no already existing category). There is no plausible connectionist

model of a feedback system like volition.

While connectionists eschew most extreme forms of modular models, the systems they

build are nonetheless specialized, in that they learn one specific function, and isolated from

other systems, as they cannot handle dynamic feedback; in other words, highly modular. In

their current form, these systems are a dead-end for cognitive psychologists looking devel-

oping global theories of cognition. Connectionists have as yet provided little reason to

believe that they can be modified to suit the purposes of a comprehensive cognitive psy-

chology.

3.9.4 Closing a Gap: The Status of Connectionist NLP

If connectionist systems are to be considered the cure for the computationalist’s problems,

they must not only be capable of developing representations bearing semantics, but must

perform at least as well as symbolic systems in manipulating these representations. Natural

language processing (NLP) is perhaps the paradigm of the human capacity for manipulat-

ing representations. And over the past decade, the state of the art in connectionist NLP has

progressed in nearly every major domain of natural language processing: dynamic binding

of variables to values (binding names to content), functional bindings and structured pattern

matching (e.g., unification), encoding and applying recursive structures, the formation of
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lexical, semantic and episodic memories, and symbol grounding (Dyer 1995). Yet, in every

one of these domains, connectionist systems lag behind the best symbolic AI systems. What

connectionists have achieved is to prove that their systems are capable of basic symbol pro-

cessing (see Touretzky and Hinton 1988). The price of this achievement has been to further

sacrifice neural plausibility, as well as adherence to connectionist principles such as exclu-

sive reliance on local computations (no global rules) and distributed representations (no

symbols in the guts of the system). Thus, the price of approximating the performance of

symbolic systems in NLP has been to surrender some of the purported exceptionalism of

connectionism.

Efforts at symbol grounding illustrate connectionist NLP’s reliance on traditiona

techniques, and thus the inheritance of the latter's limitations. Connectionist sy

grounding is restricted to toy environments, where the complexity of the environme

several orders of magnitude less than that of real-world environments. Although sym

AI shows little promise in the realm of perception, symbolic inputs to the connecti

symbol grounder are used to represent the inputs from perceptual systems. This simp

assumption has the effect of pre-grounding the symbols: the question at hand is how

bols are grounded, but the inputs from the simulated perceptual system are both sy

and assigned a meaningful interpretation by the system designer. For example, in the

system developed by Dyer and his colleagues, a circular blob is meant to be a ba

system is merely taught to associate the verbal input (also symbolic) with the extr

invariant shape of the blob, as well as with its color and the simple action/events in 

it participates (Dyer 1995). The DETE system is a symbol associator, not a sy

grounder; developing a symbol associator that “like a child, . . . must be taught incre
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tally” (Dyer 1995, 414) does not solve the symbol grounding problem. Unlike a child

system cannot develop prelinguistic categorizations of objects. According to comput

alism, these prelinguistic categorizations are also symbols in the head that are so

grounded, though clearly not by binding an explicit name to a 'representation.' Th

symbol grounding problem is not the problem of how meaning is associated with a sy

but what meaning is such that it can be associated with a symbol, if indeed that is wha

place. Assuming that symbol grounding is an association between symbols merely b

question concerning what it is to ground a symbol.

Another connectionist method of NLP that does not simply mimic symbolic

approaches is Riisto Miikkulainen’s system for reading and answering questions 

scripts, the DIstributed SCript processing and Episodic memoRy Network (DISCE

(Miikkulainen 1993, 2000). The system consists of 4 subsystems, including a parse

erator, question answerer and memory subsystem. Each subsystem has two modu

parser consists of a sentence and story parser, the generator of a sentence and sto

ator, the question answerer of a cue former and answer producer, and the memory o

icon and episodic memory. The sentence parser reads the input sentences of a sc

word at a time, and the story parser combines sequences of sentences into interna

sentations of the story to be stored in the episodic memory. The sentence generato

ates words for individual sentences, and the story generator generates the senten

paraphrase of an internally represented story. The cue former creates cue patte

memory from questions parsed by the sentence parser, and the answer producer g

answers given the question and the story. The lexicon stores representations of w

vectors of continuous values from 0.0 to 1.0. The episodic memory is a hierarchical 
146



erful

tionist

 and

se are:

or a 

n be 

.

 with

ripts,

bolic

tions,

lish

ibility

t con-
ture of ANN feature maps, similar to the SOFM. The parsing and generating is achieved by

means of a Forming Global Representations with Extended backPropagation network

(FGREP), which is a variation of Elman’s (1991) Simple Recurrent Network, a pow

but neurally implausible ANN.

Miikkulainen (1997) emphasizes the point that his system is not merely a connec

implementation of symbolic NLP. He points to 4 differences between the symbolic

subsymbolic (connectionist) approaches, several of which we have seen before. The

1. Subsymbolic representations are continuously valued.

2. Concepts have similar representations in subsymbolic systems; the ‘marker’ f

concept is not arbitrary.

3. Subsymbolic representations are holographic: any part of a representation ca

used to reconstruct the whole representation.

4. Separate pieces of information are superimposed on the same finite hardware

The final distinction, known as the superposition of information, is not to be confused

the distributive nature of representations. It will be of prominence in later chapters.

Although Miikkulainen’s system has shown significant success in processing sc

he admits that it has a long way to go before it approaches the NLP capabilities of sym

systems (2000). One difficulty facing subsymbolic approaches is how to learn abstrac

i.e., correlations that do not appear in the raw data.

Advances in connectionist NLP, including Miikkulainen’s, serve to further estab

the (empirical) rule of the inverse relationship between the neural and cognitive plaus

of connectionist systems. Until this rule is broken, there is little reason to believe tha
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nectionism sheds any light on how cognitive agents learn and process natural language. As

we will argue in the next section, this conclusion extends to connectionist learning in gen-

eral.

3.10 Connectionist Learning in ALVINN: An 
Illustration of the Gap between Human and 
Artificial Neural Network Capabilities

What is most revealing about ALVINN is not that it can mimic the human behavior of driv-

ing a car, but how it manages to do this. The neural network used for ALVINN is not excep-

tional in itself-it is like any other MLP trained via backpropagation. Its input is a digitized

image of the road scaled down to 30x32 pixels. It outputs a steering direction, which is tied

into the actual steering apparatus of the vehicle. ALVINN learns how to steer by receiving

both inputs from the cameras on the vehicle and the steering angle the supervisor chooses

as he drives as the correct output, this being fed from the steering apparatus to ALVINN.

But first the input data must be transformed for this form of learning to work. The input

image of the road is shifted both to the right and to the left of the center. In this way,

ALVINN is exposed to other possible road images that the driver does not. This is done to

feed ALVINN a representative sample of possible situations. Because the supervisor driv-

ing the vehicle is unlikely to move away from the center of his lane (training on real roads

prevents the supervisor from swerving out of his lane), ALVINN will not be fed an example

of this unless the road image is translated right and left. Furthermore, it is essential that

ALVINN be fed both right and left road curves, and that neither type predominate. Finally,

for ALVINN to perform well on both single and two-lane roads, separate neural nets must

be trained on each type.
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These limitations are clearly not present in humans. A human does not need to have

trained on swerving out of his lane in order to be able to compensate when this does happen.

Connectionists, as well as computationalists in general, often argue that such training tech-

niques are not unheard of in humans: humans often prepare themselves for situations by

imagining them beforehand. Even if this analogy is valid in some cases, no such analogy

holds for simple road-following behavior in humans. Humans learn how to drive on what

would be a drastically impoverished signal if it were all that were available to ALVINN. It

is therefore implausible that a connectionist system such as ALVINN even remotely cap-

tures important aspects of human neural and cognitive structure if its learning procedures

must deviate so greatly from human learning. 

ALVINN is not alone in having to learn from input prepared in an extraordinary man-

ner. All computational systems require this. What the example of ALVINN reveals is a flaw

in computational learning that is extensive and likely insurmountable. Computational sys-

tems cannot adequately learn from what is for them an impoverished signal, let alone learn

from signals that are impoverished for human learners.

3.11 Computationalism Revisited: Impoverished 
Learning

One of the most astonishing feats of human cognition is the ability of children to learn lan-

guage from impoverished stimuli (Gleason 1993). The stimuli are impoverished in the

sense that they only contain positive evidence: children hear only a limited number of cor-

rect utterances, without being taught what not to do, and yet are able to learn the full range

of a language. This singular ability has led a number of researchers to postulate a language
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organ in the brain that comes preprogrammed with a universal grammar (Pinker 1989).

Although connectionist NLP researchers have reported limited success duplicating this

ability with a modified form of backprop that draws implicit negative information from

positive examples, connectionist inferencing is entirely bounded by how representative the

data set is (Regier 1992). As we have seen, this was such a severe obstacle for ALVINN

that a method for extending the data had to be developed. While it is debatable just how

much learning is involved in language acquisition, and thus how much humans are them-

selves limited by the representativeness of the instructive stimuli, there is another cognitive

domain for which the stimuli is impoverished in relation to the behavioral output: human

creativity. Computational systems in general are incapable of mimicking human creativity,

for they can ’only connect’ by mapping inputs to outputs.

Artists do not merely mirror the natural world, nor simply transform their subject

according to preestablished conceptions of it, rather they create new ways of considering

their subject matter. But ANNs trained on a given function simply reproduce that function,

generalizing it to novel instances, but never changing the function. One could introduce

some randomness into the ANN, but this would not model directed creativity. Art does not

happen by accident. This criticism extends to all computational systems. For a computa-

tional system to model artistic creation, this activity must consist of a computable function

from input stimuli to output creation. Computational art has been attempted, but it is, like

all computation, a syntactic process. But the production of works of art is largely a semantic

operation: It is transformation of the natural world according to an idea rather than accord-

ing to the structural features of the environment. Computationalists argue that the syntactic

underlies the semantic. Yet, art often breaks the already given connections between syntax
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and semantics, creating new connections. James Joyce’s Ulysses is one such example where

the traditional English syntax-semantics correlation yields to a new conception. Computa-

tional systems might be able to create pretty pictures, but they cannot yield ones imbued

with a new meaning, if any meaning at all.

3.12 Why Connectionist Systems Are the Wrong Kind of 
Dynamic Systems

In chapter 2, I noted the incongruity of van Gelder advocating a dynamic systems alterna-

tive to computational theories of mind and his assertion that artificial neural networks are

a subset of the dynamic systems approach. Like van Gelder, Smolensky sees the connec-

tionist approach to modeling intuition as falling under the rubric of dynamic systems, and

thus bearing “special” properties. He offers the connectionist dynamical system hypot

The state of the intuitive processor at any moment is precisely defined by a vec
numerical values (one for each unit). The dynamics of the intuitive processor are
erned by a differential equation. The numerical parameters in this equation con
the processor's program or knowledge. In learning systems, these parameters 
according to another differential equation. (Smolensky 1988, 780)

What distinguishes a connectionist system as a dynamic system is that the state

system can be described as “a numerical vector evolving in time according to differ

evolution equations” (Smolensky 1988, 780). Van Gelder and Smolensky both ha

mind a restricted sense of 'dynamical system,' because the symbol systems they criti

themselves dynamical systems (Strogatz 1994). Symbol systems just aren't the rig

of dynamical system.

Again, no distinction is made, either by van Gelder or by Smolensky, between co

tionist systems implemented on analog devices and those implemented on digital co
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ers. Yet, according to van Gelder, one of the aspects of dynamic systems that distinguishes

them from computational systems is their relation to time. A dynamic system evolves in

continuous time, a computational system in discrete time steps. Connectionist nets run on

digital computers lack this supposedly important property. Connectionists must make a

choice: either give up the “specialness” of temporally continuous processes, or give 

results obtained on digital computers.

Similarly, connectionist nets on digital computers do not evolve continuous varia

but discrete approximations of such variables. Either there is something special ab

analog nature of signals, and thus digital connectionist nets lack this special prope

there is nothing special about it. Connectionists again seem unwilling to make a cho

Of course, digital approximations of continuous systems are of extreme value to

neers and scientists. Digital simulations of dynamic neural processes are now widel

by researchers to gain insights into the brain's processing power. An example of such

odology can be found in Touretzky and Redish's work on rat head-direction cells (R

Elga, and Touretzky 1996; Touretzky, Redish, and Wan 1993). Touretzky and R

developed a neural network consisting of arrays of neurons serving as attractors for s

directions (their preferred direction). Their responses change over time according t

crete realizations of differential equations incorporating such parameters as angular

ity (for when the rat turns its head) and the neuron's preferred firing rate. Touretzk

Redish contend that their model is compatible with the response patterns of cells in th

postsubiculum and anterior thalamic nuclei.

The success of the Touretzky-Redish model does little, however, to bolster van G

case that ANNs are a branch of dynamic systems as he envision this field, despite t
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that this model is a much closer approximation of neural behavior than the typical back-

propagation net. The Touretzky-Redish model is computational in nature (as its developers

point out) and discrete in implementation (both its temporal and numerical aspects). Thus,

even the best of ANN approaches does not fall within dynamic systems as van Gelder imag-

ines them, and so is not an exception to symbolic AI in this regard.

3.13 Connectionism’s Contribution: Superposition of 
Information

Much has been made by connectionists of the distributed nature of representations in con-

nectionist systems, despite the fact that localist networks used for natural language process-

ing are not distributed in any sense that distinguishes them from non-connectionist systems.

When connectionists speak of the importance of the distributed nature of representations in

the brain, however, they are not merely pointing to the fact that representations are spread

out over a massive number of neurons and neuronal connections, but that these sets of neu-

rons and their connections subserve numerous representations. For ANNs, this means that

the same set of connection weights can produce a variety of representations. This is the

superposition of information: unique sets of information collapsed into the same structure.

It is the superposition of information that makes neural networks difficult to analyze,

because the activities of neurons cannot be associated with discrete actions. And it is the

superposition of information that enables neural networks to embed relations between rep-

resentations within their representational framework without the need for explicit axioms

defining the relations.
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The superposition of information over distributed structures distinguishes ANNs from

traditional symbolic AI systems, as well as psychologically-inspired enhancements such as

spreading activation networks. Superposition of information in neural networks generally

occurs not only in connection weights, but in the time-locked activations of neuronal

ensembles, whereas in spreading activation networks, the nodes are generally used to each

represent a single concept. The importance of the superposition of information for cogni-

tive systems will be addressed in chapters 4, 5, and 6.

3.14 Connectionism Does Not Remedy 
Computationalism’s Problems

Connectionism is often represented as a radical break from computationalism, one that

incorporates important properties of biological neural systems, properties that are ignored

by computationalists as irrelevant to information processing. These properties include the

distributed nature of biological neural nets, their ability to superpose information, the sub-

conceptual nature of connectionist processing, the graceful degradation of performance in

the presence of damage to the system, the ability to generalize from training data, the non-

linear nature of processing units in the network, and neurally plausible learning algorithms.

Some subset of these properties (which subset depends on which connectionist is making

the argument) is presumed to enable connectionist systems to escape the failure of compu-

tationalist systems developed around the paradigms found in traditional AI to reproduce

cognition. This is little more than wishful thinking.

Connectionist systems are only slightly more neurally plausible than traditional AI sys-

tems. This difference in plausibility does not amount to connectionist systems being faith-
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ful reproductions of the apparent secrets that Nature has discovered in developing cognitive

systems. The primary indictment against connectionist systems in this regard is that there

exists an inverse relation between the neural plausibility of a connectionist system and its

ability to mimic human cognitive capabilities. Backpropagation nets are the most widely

used form of artificial neural networks, but are also among the least neurally plausible. For

speech and handwriting recognition, the time delay neural network, a variant of the back-

propagation network, has produced the best results, but is a step further from the generic

backpropagation network in terms of neural plausibility (its shared weights do not have a

known analog in neural systems). The lack of neural plausibility extends to the ability of

artificial neural networks to continue to function despite being damaged: biological neural

networks rewire themselves in response to damage, and so don’t just degrade gra

but repair damage.

What remains of the analogical argument of connectionists is the distributed nat

neural networks, biological and artificial, and their capacity to superpose information

the distributed nature of neural networks does not imply that their subunits are subsym

in nature, and are, therefore, not computing over symbols. The flawed assumption is

a neuron is a feature detector for a set of features for which we have no concept, th

ron’s activity cannot be regarded as symbolic. In itself, the distributed nature of repr

tations in neural networks is just a fact; it does not imply that minds form concepts th

subconceptual operations. It does, however, enable a greater superposition of inform

And superposition of information allows for a reduction of what needs to be explicitly

resented, such as relations between representations.
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In itself, the capacity for superposition of information, however, does not indicate how

semantic information arises. Instead, it points to how certain practical problems surround-

ing how semantic information is manipulated, problems that arise when considering the

frame problem, may be solved. But by telling us how information may be stored, it circum-

scribes what semantic information can and can’t be. Whether the frame problem re

that minds make use of such techniques as superposing information, or whether it 

solved within the framework of traditional AI, is examined in the next chapter.
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Chapter 4 Semantics and Robotics: How 
the Frame Problem 
Continues to Plague 
Computationalism

Searle’s Chinese Room argument has exposed AI's inability to produce semantic

syntax. And while it may be true that “just about everyone who knows anything abo

field dismissed it long ago” (Dennett 1997), it continues to generate replies, as well a

comfort among computer scientists who come in contact with it for the first time. But 

if we assume that those who dismiss it are in the right, AI still faces a host of severe 

cles. An AI system that has symbols bearing semantics is not frozen in time and sp

exists in a changing world, and these changes must be reflected in the system if it 

‘grounded’. This task, traditionally considered to be independent of the semantics 

system, is a daunting one, because the system must choose which of its rules are 

to the next moment in time and its novelties, and which are not. It must also keep its b

up-to-date as the world changes, and these beliefs must represent all of the conditio

need to be satisfied for the system to successfully carry out a task.

4.1 What Is the Original Frame Problem?

Each of these problems has been confused with what McCarthy and Hayes (1969

tified as the frame problem. The original frame problem is not one of how to adapt r

sentations in real time to a changing world, nor how to make representations refle

complexity of that world. It is a problem that arises when one reasons about a changing
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world. It afflicts both real-time systems and systems that need not keep up with the world,

although not all AI systems are susceptible to it. In particular, systems which do not repre-

sent time-related actions are not affected by the frame problem.

The frame problem arises when one tries to represent change with a time-related logic.

The situation calculus is one example of such a logic. It is an extension of first-order logic

for the purpose of expressing time relations, such as the outcome of action from one

instance in time to the next. To be able to reason about actions and their outcomes in time,

one must be able to determine what changes an action causes as well as the changes it does

not cause. As Hayes expresses it:

One feels that there should be some economical and principled way of succinctly saying
what changes an action makes, without having to explicitly list all the things it do
change as well; yet there doesn’t seem to be any other way to do it. That is the
problem. (Hayes 1987, 125)

Hayes has attempted to guard the notion of the frame problem from efforts to expan

the problems listed in the introduction to this chapter. Nonetheless, he gives some 

tion that he believes that there is something deeper involved with the frame problem

just properly augmenting logic-based knowledge representation systems: “we aren’

ing nature at the right ontological joints, if you ask me” (Hayes 1987, 130).

4.2 How the Frame Problem Has Evolved: The General 
Frame Problem

Much to chagrin of its original framers (Hayes 1987), the frame problem has since m

tasized into a number of problems concerning a representational system’s relatio

changing world. We have seen a few of these already. The control problem is the pr

of making sure the system makes the right deductions without wasting time on irre
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ones (Hayes 1987). The update problem is that of making sure the system’s beliefs

the world as it currently is, i.e., to make sure they are up-to-date (Hayes 1987). The

fication problem is that of making sure one has represented everything that needs to

isfied in order to succeed in a task (Janlert 1987). A few of the problems identified wi

frame problem can rightly be dismissed as not really being problems, but rather ar

study (Hayes 1987), such as Fodor’s notion of Hamlet’s problem (Fodor 1987), wh

the problem of when to cease thinking and just act. Nevertheless, the frame problem

extend beyond axiomatic systems, because it forces researchers to develop a rep

tional scheme that avoids it, i.e., finding a replacement for logic as the representa

medium. The problem of “finding a representational form permitting a changing wor

be efficiently and adequately represented” (Janlert 1987, 7-8) is the general frame pr

and it afflicts AI as a whole. 

The expanded frame problem is generally conceived to be a question of the form

content, of representations:

The frame problem is an indication that informationally equivalent systems, sys
conveying the same information about the represented world, may yet differ drast
in efficiency. The situation is somewhat analogous to choosing between differen
gramming languages; although they are computationally equivalent in the mathe
cal sense, we recognize that there are important differences in the ease and eff
with which they are applied to different types of tasks. (Janlert 1987, 8)

Janlert paradoxically argues that the frame problem is a problem not of what data-stru

and algorithms to use, but of how to take into account the way the world is. He goes

as to contend that a solution to the frame problem will have to get the metaphysics

world to be modeled correct. This would seem to contradict the proposition that the 

problem is not concerned with the content of representations.
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It is Janlert’s quoted formulation, and not his tying of the form of representations t

metaphysics of the world, to which computationalists must adhere. If AI systems are

ble of representing what humans represent, but nevertheless fall victim to the frame

lem (whereas humans do not), then the fault must be in the form of the representatio

this is to assume that 1) AI systems can represent what we represent and 2) the co

a representation can truly be separated from its form. Janlert’s stipulation that the s

form of representations depends on the metaphysics of the world indicates that he 

2).

If we are to assume Church’s thesis, it is unclear how the form of representation

be the key to solving the frame problem. AI systems with different forms of represen

may still be computationally equivalent: each capable of computing the same func

Thus, a computationalist who accepts both this formulation of the frame problem

Church’s thesis must reject functionalism, because he must accept the possibili

between two functionally equivalent systems there is a world of difference, namely the

ity to model the world. Difference in form of representation can account for differen

efficiency of computation, but this is only one half of a solution to the general frame p

lem. The other half, finding a representational scheme that “adequately” models the 

is left unsolved. Unless, of course, the form and content of a representation are no

trarily related as the Physical Symbol System Hypothesis would have it.
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4.3 Attempted Solutions to the Original Frame Problem

4.3.1 The ‘Sleeping Dog’ Approach to the Frame Problem

One approach to solving the frame problem is to declare that it doesn’t exist, an approach

taken by Drew McDermott in his essay “We've Been Framed: Or, Why AI Is Innoce

the Frame Problem” (McDermott 1987). Dividing the frame problem into its logical, c

putational, and metaphysical aspects, McDermott declares the former two solved a

last aspect irrelevant. 

According to McDermott, the logical aspect of the frame problem, the question f

by axiomatic systems as to which axioms to apply and which not to, is solved by jettis

monotonic logic and using nonmonotonic logic. Nonmonotonic logic systems allow

default beliefs that take precedence in an absence of contradicting evidence. A non

tonic logic system that saw a person seated behind a desk but was unable to see the 

legs would not deduce that the person had no legs. The default belief that people ha

legs would be preferred over a deduction with insufficient evidence. Only evidence

could demonstrate the original belief to be false would be sufficient to revise this b

One axiom replaces the countless axioms specifying the relations between all po

events:

If a fact is true in a situation, and it cannot be proven that it is untrue in the situ
resulting from an event, then it is still true. (McDermott 1987, 115)

The computational problem is solved by ‘letting sleeping dogs lie’, or just not compu

anything beyond the effects of a given situation. This assumes that we know what to c

in our database for each situation, or if a separate database is used for each situatio

to put in those separate databases.
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As for the metaphysical problem, McDermott sees this as the problem of noticin

and only relevant inferences about change” (1987, 121). He argues that because 

cannot accomplish this feat, we should not expect AI systems to, nor need they, in an

But this argument whitewashes important differences between what humans and A

tems can do by lumping both into the irrelevant category of ‘incapable of knowing all

overestimating the degree to which AI systems can mimic humans. The limitations A

tems have in accomplishing what humans do indicates that this aspect of the frame p

is very real. 

4.3.2 Why the ’Sleeping Dog’ Approach Does Not Address the Frame 
Problem

It is not necessary to address the frame problem’s logical and computational aspe

McDermott sees them, in order to demonstrate that the general frame problem still 

But if McDermott’s claims about these two aspects are themselves incorrect, then th

eral frame problem must exist, as no one has solved its most concrete obstacles.

The ‘sleeping dog’ approach does not, in fact, address the computational facet 

frame problem. The reason is that the method for making the problem computationall

table is itself computationally intractable. McDermott’s proposed solution, having sep

databases for each situation and only updating information in the database for the si

at hand relevant to the occurring event, assumes an exhaustive solution to the fram

lem. If we could only create databases of all the knowledge that enables us to act in

uations, as well as of what is relevant to each event occurring in each situation, th

could create the solution McDermott envisions. McDermott is right that humans d

know all relevant inferences for every situation, but this does not imply that enco
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human ability to make relevant inferences is a tractable problem. Humans are capable of

making the correct inference in countless novel cases. The novelty of the situation may be

irrelevant, but the irrelevance of it must also be accounted for in the databases. And in many

cases, one cannot imagine a solution to a problem until it is experienced. How is this to be

encoded in an AI system?

The restrictions McDermott places on what needs to be encoded are not sufficient to

make this a tractable problem. The solution McDermott imagines assumes a massive col-

lection of databases. In order for this implementation to be plausible, that is, within reach

of a system that does not have a brain the size of a room, there must be superposition of

information in the system’s brain. But the superposition of information excludes Mc

mott's proposed solution of separate databases for situations. McDermott's claim th

working AI program has ever been bothered at all by the frame problem” (1987,

reduces to: No AI program works in such a way as to need to solve the frame problem

is just to say that no AI program tackles the hard problems of cognitive beings. M

mott's supposed solutions are no more than blank checks.   

4.3.3 Circumscription as a Possible Solution to the Original Frame 
Problem

The ‘sleeping dogs’ strategy is an attempt to formalize what has been termed as the

mon sense law of inertia’ (Shanahan 1997), which holds that inertia is the norm an

change is exceptional. As noted above, accommodating this law in one’s represent

system generally means moving away from monotonic to nonmonotonic logic. One

effort to formalize the law of inertia by means of nonmonotonic logic is McCarthy’s 

cumscriptive logic (1980, 1986). It is an extension to the situation calculus which a
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predicate, Abnormal, and attempts to minimize it, i.e., to limit the set of objects about which

is true.

The situation calculus is a many-sorted first-order predicate calculus, where many-

sorted means that the variables, constants and functions of the calculus can be assigned to

different sorts. The sorts generally consist of situations, fluents, and actions. Situations are

snapshots of the world at a particular moment. Fluents can be functions with the space of

situations as domains, or they can be reified to be objects representing a limited situation.

Actions are what the name suggests. The situation calculus also includes a function Result

from actions and situations to situations, and a predicate Holds that takes a fluent and a sit-

uation as arguments. To express that it is raining in situation S0, we would write:

Holds(Raining, S0) (Shanahan 1997). Effect axioms are formulae that express what holds

as the result of a particular action. 

A circumscriptive logic adds the additional predicate Abnormal, applying it as follows:

Equation 4-1. Application of Abnormal in Circumscriptive Logic

This states that if an action on a fluent in a situation is not abnormal, then the result of the

action on the fluent does nothing. Minimizing the predicate Abnormal means adding a

second-order formula to limit its applicability while allowing other predicates to vary (they

can apply or not apply as their arguments are abnormal or not). In the situation calculus

defined above, it would be the predicate Holds that is allowed to vary.

Although promising, circumscription has been demonstrated to lead to what is referred

to as the “Yale Shooting Scenario” or the Hanks-McDermott Problem (Hanks and Mc

mott 1986). The Yale Shooting Scenario attempts to formalize a situation in which s

Abnormal a f s, ,( )¬ Holds f Result a s,( ),( ) Holds f s,( )↔[ ]→
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s

one gets killed by a gunshot using three actions (Load, Wait, and Shoot), two fluents (Alive

and Loaded), and two effect axioms:

Equation 4-2. Effect Axiom 1: Load puts a bullet in the gun

Equation 4-3. Effect Axiom 2: Shoot action kills victim

There are two observation sentences about the initial situation, namely that the victim is

alive and the gun is not loaded. We can produce a model with minimal abnormalities that

produces the intended result, but it is also possible to produce an anomalous minimal model

in which the Wait action unloads the gun. Thus, minimizing a predicate does not guarantee

us a result free of nonsensical consequences. This has been demonstrated for a number of

nonmonotonic logics (Hanks and McDermott 1986).

A number of other criticisms have been directed against the nonmonotonic logics that

have been suggested as solutions to the frame problem. These criticisms include that these

logics cannot represent concurrent action, continuous change, domain constraints, and

actions with non-deterministic effects (Shanahan 1997). Shanahan claims to have over-

come all of these defects and to be on the verge of a complete solution to the frame problem.

4.3.4 Recent Developments: Shanahan’s Circumscriptive Event Calculu

Shanahan (1997) proposes three criteria that a solution to the frame problem ought to meet:

representational parsimony, expressive flexibility, and elaboration tolerance. A solution

that is representationally parsimonious allows for the construction of representations that

are compact, meaning that the size of representations is approximately equal to the sum of

the number of fluents and actions involved in the representations. Expressive flexibility

Holds Loaded Result Load s,( ),( )

Holds Loaded s,( ) Holds Alive Result Shoot s,( ),( )¬→
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means that a solution for a simple domain should be applicable to a complex domain. In

other words, adding arbitrary domain constraints, non-deterministic events, and continuous

change to a domain should not result in the reintroduction of the frame problem. A solution

is elaboration tolerant if adding new information does not demand additional effort beyond

the complexity of that new information; the ideal is that one could append new sentences

directly to a theory and produce the new, desired theory. These criteria were introduced by

Shanahan to avoid solutions that require the theorist to produce domain-specific logics,

which in turn increases the computational burden of a cognitive system employing such a

scheme. A solution that meets these three criteria would be more easily implemented. In

fact, it is conceivable that solutions to the frame problem that do not meet these criteria are

not implementable.

Shanahan claims that his near solution to the frame problem, the circumscriptive event

calculus, meets all three criteria. The circumscriptive event calculus departs from the situ-

ation calculus by adapting a narrative time line and associating a situation with each point

in the line. A narrative is “a distinguished course of events about which we may 

incomplete information” (Shanahan 1997, 155). The calculus introduces the functionIni-

tial(), Start(), Happens(), Actual(), and HoldsAt(), the purpose of which is evident from

their names. Happens() is minimized, while a further function State() (State(t,s) means tha

time t is associated with state s) is allowed to vary. A state is simply a set of fluents

purpose of introducing State() is so that 

each time point is associated with a single, characterizing state s, such that the 
is in s if and only if f was initiated by some event before t and still holds at t, and N
is in s if and only if f was terminated by some event before t and still doesn’t hold
(Shanahan 1997, 274)
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Abstate() is the event calculus version of Abnormal as it is applied to states. Shana

proposed solution to the frame problem consists of minimizing Abstate() at a high pri

minimizing Happens(), Initiates() and Terminates() at a lower priority, and allow

HoldsAt() and State() to vary.

Events with non-deterministic effects are handled by assuming that the non-dete

ism really doesn’t exist. Instead, an event with non-deterministic effects is considered

a disjunction of events with deterministic effects, and the non-determinism appears a

only because we don’t know which events occurred. It may be noted that this approac

tradicts the reigning interpretation of quantum mechanics, which holds that events 

fact truly non-deterministic, but not being able to represent quantum mechanics is 

confined to just AI systems.

Representing concurrent events requires the introduction of an axiom defining a 

tion of Happens() that allows us to express that two events are concurrent, and a pr

Cancels(a1, a2) that means that events a1 and a2 cancel one another. Cancels() is

mized with the same priority as Happens().

To represent continuous change, Shanahan uses the predicates Triggers() and Trajec-

tory() and distinguishes between discrete and continuous fluents. Trajectory(f1, s, 

denotes that after a period of time d, the continuous fluent f2 holds if the discrete flu

is initiated in state s. Triggers(s, a) indicates that an event of type a occurs in state 

nahan illustrates this formalism with the example of how one would represent the ev

a ball moving horizontally along a surface toward a vertical shaft, falling into whic

bounces back and forth until it reaches the bottom. He introduces four event typesPro-

pel(v), Drop, Bounce, and Stop. Propel(v) means that the ball is set in motion with veloc
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v. Four fluents are introduced as well: Distance(x), Height(x), Moving(v), and Falling. Dis-

tance(x) indicates that the distance to the hole is x, Height(x) means that the height of the

ball is x, Moving(v) indicates that the ball is moving with velocity v, and Falling means that

the ball is falling. The quantities A, B and C represent the distance from the starting point

to the near wall of the shaft, the distance from the starting point to the far wall and the height

of the shaft, respectively. A set of axioms formalize notions about horizontal movement:

Equation 4-4. Axioms concerning horizontal movement

The next set formalizes what happens when the ball reaches the shaft.

Equation 4-5. Axioms representing the ball beginning to fall

The next set represents when the ball reaches the far wall of the shaft and a sequence of

bounce events are triggered.

Equation 4-6. Axioms for bounce events

The last set represents what happens when the ball reaches the bottom of the shaft.

Equation 4-7. Axioms for halting

Initiates Propel v( ) Moving v( ) s, ,( )

Releases Propel v( ) Dis ce x( )tan s, ,( )

HoldsIn Dis ce y( )tan s,( ) x y v d×+( )=∧ Trajectory Moving v( ) s Dis ce x( )tan d, , ,( )→

HoldsIn Dis ce x( )tan s,( ) x A= HoldsIn Moving v( ) s,( ) v 0>∧ ∧ ∧ Triggers s Drop,( )→

Initiates Drop Falling s, ,( )

Releases Drop Height x( ) s, ,( )

HoldsIn Height y( ) s,( ) x y 4.9 d
2×–( )=∧ Trajectory Falling s Height x( ) d, , ,( )→

HoldsIn Dis ce x( )tan s,( ) HoldsIn Moving v( ) s,( ) x B v 0>∧=[ ] x A v 0<∧=[ ]∨∧ ∧ Triggers s Bounce,( )→

HoldsIn Moving v1( ) s,( ) v1 v2–=∧ Initiates Bounce Moving v2( ) s, ,( )→

HoldsIn Moving v( ) s,( ) Terminates Bounce Moving v( ) s, ,( )→

HoldsIn Height x( ) s,( ) x C= HoldsIn Falling s,( )∧ ∧ Triggers s Stop,( )→

Terminates Stop Moving v( ) s, ,( )
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Along with the appropriate domain constraints guaranteeing the uniqueness of the

height and distance from the starting point, as well as the proper initial conditions, 

axioms produce only conclusions which would be expected without any bizarre c

quences as found in the Yale Shooting Scenario. The work of Shanahan and thos

whom he builds appears to have produced real progress toward a solution for the s

frame problem.

4.3.5 What Is Missing from the Circumscriptive Event Calculus?

Shanahan is leery of declaring the frame problem solved, so what then remains uns

Shanahan gives only a few details of what might be considered missing from his ci

scriptive event calculus. It is apparently unable to deal with hypothetical sequenc

events, which deductive approaches are able to handle. It is also unsuited to repre

complex actions, although Shanahan contends that they can be accommodated w

minor modifications to the calculus. So why not declare the frame problem solved?

The primary reason for not declaring the circumscriptive calculus of events to be a

tion is that there is as yet no general proof that it will not produce anomalous mo

Another reason, though denied by Shanahan, is that it is not really representationa

simonious. Shanahan’s own example of the ball and shaft situation requires on the o

(f x a) axioms rather than the (f + a) that Shanahan defines as the approximate mea

parsimony. And there is reason to believe that this problem is only exacerbated wh

consider complex actions in addition to continuous change and concurrent events.

Terminates Stop Falling s, ,( )

HoldsIn Dis ce x( )tan s,( ) Initiates Stop Dis ce x( )tan s, ,( )→

HoldsIn Height x( ) s,( ) Initiates Stop Height x( ) s, ,( )→
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Unfortunately, the world does not resemble the ball and shaft example, with simple

actions and linear change. Some researchers (Lespérance et al. 1994; Levesque et 

have attempted to accommodate complex actions in their solutions to the frame pro

but it is important to note what they conceive to be complex actions:

the behavioral repertoire of a robot must include complex actions, for example the
action of clearing off a table, defined as something like “While there is an object o
table, pick it up, then place it on the floor”. This action is defined in terms of prim
actions “pick up an object” and “put an object on the floor”, using iteration 
sequence. (Lespérance et al. 1994)

A basic tenet of this approach is that complex actions can be broken down into s

primitive actions, yet primitive actions are only consistently primitive—involving only o

action—in laboratory or strictly controlled settings. Consider the real-world com

action of a soccer goalie attempting to catch a swerving ball crossed to the center of t

mouth with opposing players attempting to head the ball into the net. What are the pri

actions that make up this complex action? If they exist, they are extremely context d

dent. A different set of primitive actions are required when slightly different conditions

vail, such as the direction of the wind.

When complex, concurrent, and continuously changing events occur, we must 

provide the frame axioms describing the interactions of the primitive actions and flu

or we must substitute equations describing the physics of the situation. An example 

latter tactic can be seen in Shanahan’s ball and shaft example. Presumably with our

goalie example, an equation for the ball’s trajectory must be supplied, otherwise a st

step description of its flight pattern would be necessary. Yet the situation and event c

are attempts to avoid having to know the physics of the world in order to represent 

act within it. One alternative to either knowing the exact physics of the world or formal
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common-sense in event or situation calculus is pattern recognition, an alternative that has

been suggested by a number of authors (Dreyfus 1972; Margolis 1987). One aspect of cer-

tain pattern recognition systems, the superposition of information of neural networks, will

be examined in the context of its usefulness in solving the general frame problem.

4.4 How the Specific Frame Problem Leads to the 
General Frame Problem

Both Shanahan (1997) and Hayes (1987) contend that the specific frame problem can be

divorced from the general frame problem. The general frame problem spans a host of spe-

cific problems—the update problem, the prediction problem, the control problem—a

which relate to a system’s ability to represent and act in a changing world. While it is

as Shanahan argues, that one can solve the specific frame problem without discus

general frame problem, it is not necessarily true that each component of the genera

problem can be solved independently to form a final, general solution. A solution t

specific frame problem may worsen other aspects of the general frame problem. For

ple, a solution to the specific frame problem that is not elaboration tolerant and repre

tionally parsimonious makes the update and control problems much worse by expa

the number of axioms that must be considered in order to properly update and cont

system. And using event or situation calculus to tackle the qualification problem lead

solution to the specific frame problem that is not representationally parsimonious, be

it attempts to represent complex events in terms of primitive actions and their combin

relations.
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What this means is that even if cognition is computable in Rapaport’s sense, it 

not be realizable as a computation because of the demands it would place on its re

hardware. Hayes (1977, 1987) and others (Janlert 1987; Shanahan 1997) have spe

that the origin of the frame problem may lie in attempting to represent that world as 

lection of individuals and the relations between them. This is exactly the position a

for here. Symbol systems are inappropriate means for representing the world. This

to two factors. The first is that attempting to build representations from primitive ac

and entities and their relations leads to representational schemes that are too comple

if such a system were to solve the specific frame problem, it would be faced with the

lem of updating the system’s beliefs in real-time. This leads to the second factor. Th

resentations of symbol systems are not ‘live’ in the sense that they adapt with the ch

world. Symbols and computations over them are timeless in that the algorithms in 

they figure produce the same result regardless of how long they take. If something

algorithm for thinking thought X, it is such whether finishing it takes a nanosecond

century. They are also contextless in that if a system’s connections to the world are c

algorithms in which they figure produce the same content. It is because of these aspe

the update problem occurs.

A working alternative to the symbolic approach can be found in the human b

Although we do not know exactly why it works, there are aspects of human neural 

tioning that are known and offer a possible course for solving the general frame pro

One such aspect is the superposition of information in neural structures, an aspect 

was noted in the previous chapter, also appears in artificial neural networks.
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4.5 Superposition of Information as a Step Toward 
Solving the Frame Problem

In the previous section, I argued that attempting to pick out and tag primitives in the world

with symbols and attempting to enumerate their relations is what leads to the frame prob-

lem. Connectionists have proposed that distributed representations rather than discrete

symbols provide a better way of representing the world. The distributed nature of connec-

tionist representations does indeed assist in solving one aspect of the general frame prob-

lem, namely the need for representations that are plastic and gracefully degrade so that

there is not a catastrophic failure to match representation and world when the world (or rep-

resentational system) changes. Superposition of information in ANNs has also received

some attention, but not in the context of the frame problem. Connectionists have pointed

out that relations between representations are captured implicitly through the superposition

of information (Smolensky 1988; van Gelder 1991; O’Brien and Opie 1999).

The relation between representations that are superposed is generally considere

that of similarity, either membership in the same category or similarity across categ

Even if it merely establishes similarity, superposition gains the cognitive system a co

erable reduction in complexity when combined with spreading activation. If one repr

tation triggers activation of other neural structures representing a particular relat

similar representation may also trigger this relation. A computationalist might objec

something similar can be achieved with the generalization of frame axioms; howev

there are any qualifications on these generalizations, they will have to be forma

whereas these qualifications could be superposed in a neural network.
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Superposed information embodying similar representations need not trigger only simi-

lar relations. Chaotic systems, which, according to Skarda and Freeman (1987), at least

some of the brain’s structures qualify as, are capable of bifurcations—large-scale ch

in the dynamics of system—with only small parameter changes. Two superposed rep

tations might trigger radically different behaviors depending on slightly different out

produced in their formation, which is the activity of the net given a trigger for each re

sentation. Bifurcation will be discussed more thoroughly in the following chapter.

Superposition of information may also help alleviate the update problem. Updatin

relations pertaining to a specific representation can also result in the representations

posed with it also having their relations updated. 

In the final analysis, if the conclusion that the frame problem, both general and sp

is tied to symbols systems is correct, we would see it manifested in actual AI systems.

is made by proponents of symbolic AI that the specific frame problem never really tro

any AI system (Hayes 1987; McDermott 1987). This is certainly true for chess-playing

tems. It is certainly not true if we look at robotic systems that are meant for operat

domains that are not simply toy (laboratory) worlds, and especially if we consider the

eral frame problem. So how might robotics provide a test for solutions to the frame 

lem, and, consequently, for whether we are, as Hayes (1987, 130) puts it, “carving 

at the right ontological joints”?

4.6 A Test of Semanticity: Robotics and its Failures

As McCarthy (1996) has pointed out, Dreyfus, in his critiques of symbolic AI (1972, 19

has given little consideration to the wealth of research programs that fall under that r
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Dreyfus focused primarily on chess playing programs and the knowledge representation

system Cyc (Lenat and Guha 1990), an attempt at creating a cognitive system by represent-

ing enough information. Deep Blue’s triumph over Kasparov does damage to Dreyfus

tique, because Dreyfus attempted to apply that critique to a domain which does not

from the frame problem, specific or general. The Cyc project, on the other hand, con

to miss the deadlines set by the researchers working on it, and Dreyfus is right to c

terize it as a “degenerating research programme” (Dreyfus 1996). However, neithe

nor Deep Blue assists us in assessing whether symbolic AI has overcome the genera

problem and, therefore, the representational challenge underlying it. An indicatio

whether symbolic AI can overcome the general frame problem must be sought in the

of robotics, for only there is the AI researcher required to solve it. Furthermore, the fie

cognitive robotics allows us to judge whether the efforts at solving the specific frame 

lem yield representational systems that can be applied effectively to real, dynamic en

ments.

The task at hand is not merely to find robots that successfully carry out the 

assigned to them. Most of the successes in the field of robotics can be ascribed to ef

constrain working environments so that a robot can operate in them. Highly speci

sensors that reduce the need for reasoning about perceptions are also essential f

navigation and localization. Whereas humans use stereo vision along with monocula

cues to perceive 3D environments, structured light techniques are the most widely

methods for achieving this goal in general computer vision, and, by extension, in robo

depend on computer vision. Structured light techniques involve casting a light sourc

known characteristics (usually a laser line) onto a scene, and using the knowledge
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position of the light source relative to the camera to determine the depth of the detected

light points in a captured image. When cost is not an issue, laser range finders might also

be used to produce even denser range data. We might characterize this as a perceptual

approach to robotics, as opposed to a cognitive approach, which would attempt to use high-

level reasoning abilities on less rich data to ‘figure out’ how to achieve a goal. The pe

tual approach seeks to find a unique attribute of a goal or obstacle and a sensor th

out that attribute with the least possible noise, and then often attempts to constrain th

ronment so that there is no interference in sensing this unique attribute.

The perceptual approach is more cost-effective and easier to implement than a s

to the general frame problem. It is questionable, however, whether it can be ext

beyond the simplest of environments. The difficulties lurking in very constrained env

ments for robots based on perceptual approaches is starkly illustrated by the Demete

for automated harvesting (Ollis 1997; Pilarksi et al. 1998). 

4.6.1 Percepts without Concepts: The Perceptual (Sensor-based) 
Approach to Robotics

Demeter is a New Holland harvester that has been automated by the National Ro

Engineering Consortium to cut alfalfa and sudan fields without the intervention of hu

operators. Alfalfa fields in the Imperial Valley, CA are exceptionally suited to robotic o

ations, with few obstacles, lush crop, soil color quite distinct from crop color, and re

gular fields. The original Demeter harvester was guided by a computer vision syste

attempted to detect the boundary line between cut and uncut crop. A variety of ban

filters were tested to find whether unique portions of the light spectrum corresponded

and uncut crop, but this methodology yielded little information to aid segmentatio
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images. The final algorithm segmented cut from uncut crop in images taken by cameras

mounted on either side of the harvester cab by searching for a step in color space and adapt-

ing weights applied to the RGB values in the images according to the separation found in

prior images. To deal with shadows, the shadowed pixels, determined by applying a thresh-

old, were adjusted according to the difference in spectral power distribution between shad-

owed and unshadowed regions. In a number of settings, these techniques worked

admirably, enabling the harvester to cut with accuracy and speed approaching human com-

petency.

Even in an environment as constrained as an alfalfa field and as ideal as the Imperial

Valley, Demeter is unable to consistently track the boundary between cut and uncut crop

under normal working conditions. These conditions include cutting throughout the day and

without having to stop for patches of sparse crop. The position and cause of shadows

change as the day progresses, making a poor shadow compensation algorithm even worse.

The problem of shadows obscuring important features is ubiquitous in computer vision; a

survey of the relevant literature reveals that no general technique for adequately compen-

sating for shadows exists. Yet human drivers are able to follow a boundary line obscured

by shadows even when there is no appreciable color difference to the two sides of the line.

A number of cues are used, including depth perception, the position of cut crop piles

(known as windrows), where the crop hits the cutter bar, and knowledge of the general cur-

vature of the boundary line. Sections of sparse crop require similar reasoning about the sit-

uation for the driver to make the correct cut. Demeter has since been augmented with GPS

to constrain the output of vision, and subsequently to replace the vision system. Demeter

no longer perceives, let alone reasons—it is guided through a combination of knowle
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a field’s layout and godlike omniscience of where it is provided by GPS. Demeter suc

because the environment it faces has been made static. Its frame problem has n

solved so much as eliminated.

4.6.2 Concepts without Percepts: The Cognitive Approach to Robotics

At the other extreme is the approach taken by researchers in Cognitive Robotics, w

an effort to develop high-level robotic control, enabling a robot to reason about its en

ment in addition to perceiving it (Levesque and Reiter 1998). This stands in contr

‘automated planning’, a methodology that seeks to determine how a robot can achi

goal a priori and then provides the robot with the solution (this describes Demeter’s c

state). Levesque and Reiter (1998) identify four problems with the automated pla

approach, problems that describe the general frame problem:

no sensing: the planning system is expected to generate a sequence of actions w
considering the results of sensing;
lack of reactivity: exceptional situations might arise during execution: high-prio
interrupts, failures of execution modules, unanticipated situations;
computational intractability: for all but very simple domains, automated planni
appears to be infeasible; at its very best, planning seems ill-suited to generatin
long sequences of actions;
incompatibility with conventional robotics: conventional robotics deals with micro
actions where decision are made many times per second in worlds characteriz
noise and uncertainty. (Levesque and Reiter 1998, 1)

Their proposed method for tackling high-level robotic control incorporates a version o

situation calculus developed by Reiter (1991) to solve the specific frame problem an

into a programming language, GOLOG, based on Algol. The input to robotic systems

on this approach is not a goal, but a program to be executed, and a program interpre

erates the primitive actions needed to execute it.
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A pair of robots have been implemented using GOLOG, including a mail delivery robot

at the University of Toronto and a museum guide at the University of Bonn (Levesque and

Reiter 1998). According to Tam (1998), the mail delivery robot dealt with obstacles by

stopping for 15 seconds. If the obstacle remained, it was considered permanent and mail

could not be delivered to the intended person. Each person was given 2 credits, and the

credit total for a person was reduced by 1 each time the robot could not deliver mail to that

person. At 0 credits, the person would no longer receive mail from the robot. Tam points

out that, due in part to hardware limitations, the methodology could not be tested “w

real robot and environment” (Tam 1998, 124). An interesting aspect of the experim

with the mail robot is that the term used by the robot to describe the current situation

over time such that the robot took longer and longer to reason. A technique referre

‘rolling forward’ or ‘progressing a database’ (Lin and Reiter 1997), which treats the curre

situation as an initial situation, was used to limit the length of the term. No information

given regarding the computational burden of such a procedure or its possible side-e

Intuitively, removing the robot’s memory of a situation’s history would seem to gre

limit its ability to adapt to its environment. All persons with 0 credit would have that a

initial condition rather than as a condition caused by the environment and therefore a

ble according to changes in the environment.

The cognitive robotics research presented above represents only minor progress

a solution of the general frame problem, and is hardly a renaissance for the sym

approach as McCarthy (1996) makes it out to be. And it gives little indication that fur

substantial progress will be made, given its limited success with a toy environmen

task.
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4.6.3 How to Apply Robotics: A Robot Turing Test

Although it has been argued that for a computer to successfully pass the Turing Test, it must

have solved the frame problem (Crockett 1994), a more direct test of an AI system’s c

ity to overcome the general frame problem, and, therefore, to represent the world as h

do, at least in instrumental terms, can be easily developed. Embodying an AI syste

robot that must navigate in real-world settings while carrying out complicated tasks w

automatically eliminate any charge of rigging results or lack of adaptability. The test w

not rely on how well the system can deceive observers, but how well it achieved its e

goal. The test would not necessarily require human-level intelligence, although raisin

threshold to that level would eliminate any further doubts whether that additional step

be attained, nor would the robot have to fool people into thinking that it was actua

human. Such an exercise undoubtedly tests more than the minimal requirements ne

for establishing a system to be cognitive, but this would answer critics of the Turing

who argue that it does not set the threshold high enough.

What then are the general criteria for such a test? The following list is not meant

exhaustive, nor do I claim that it is minimal. It is simply meant to expose whether a 

has solved the general frame problem, which I have argued indicates whether a syst

adequately represent the world.

1. Goal Identification and Generalization: The goal should not be too specific or too

uniquely identified. The test should not be one of, for example, taking uniquely

identified object X to uniquely identified place Y. Generalizability means that it

should be extendable to similar situations. An example of a goal that is not too

unique, and that is generalizable, is to stock products on a shelf in a busy stor
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the robot can stock items in aisle 1, it should be able to stock them in aisle 2, even if 

aisle 2 has differently positioned shelves. Nor should the robot require a predeter-

mined map and plan of the shelves.

2. Complex Goals: The robot’s goals should not require merely simple actions to 

achieve, such as: drive straight, drop item, drive back. 

3. Dynamic Obstacle Detection and Avoidance: The robot should be able to detect 

obstacles, whether permanent or temporary, moving or static, and either mane

around them or move them out of the way. A test in which the robot need only

up after detecting a permanent obstacle tests very little. This criterion alone te

wide array of abilities, such as the capacity to plan a new path and the ability 

determine the presence and type of obstacle.

4. Goal Reformulation: If achieving the goal is not possible, can the robot reformul

the task to achieve an approximation to it. One might argue that this requires 

human-level intelligence, but a simpler version would simply require that the ro

do as much as is possible.

5. Tolerance to own failures: The robot should be able to recover from its own mis-

takes as well as tolerate minor failures in its system. An example of the forme

picking up a product if the robot dropped it in its attempt to stock it on a shelf. 

example of the latter is the robot continuing to complete its task even if one of

wheels breaks and it is still able to drive; the robot may have to adjust how it c

pletes the task, but if it is physically within its ability, it should attempt it. Even b

ter would be to dynamically determine whether the task is still within its ability.
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Requirements such as these will produce howls among researchers who concentrate on the

theoretical or higher-level aspects of cognition. They will object that these criteria represent

‘hardware problems’, and that they should not be required to solve them. This is utte

sense. Although there is an underlying assumption that certain hardware solutio

found, such as a sensor to detect whether a wheel is broken, the criteria test the robo

ity to handle the update, prediction, and control problems in addition to reasoning a

changing environment without deducing anomalous occurrences (such as stocking a

on a shelf causing the floor to disappear), i.e., the general as well as the specific fram

lems. Requiring this to be done in hardware does more than make more work for res

ers: it eliminates the wild implausibilities and beneficial constraints of simulat

Everything works in simulation.

I have already given a hint as to what an example of such a test might look like. A

that must stock shelves in busy grocery stores would face all five tests. The robot co

taken to any store that stocked products on shelves, and it would successfully stoc

as customers are walking through the store. The reason robotics is so far off from ach

this is not hardware limitations. CCD cameras as sensitive as the human eye have lon

available. What is lagging behind is the state of AI. 

4.7 The Frame Problem Persists

Symbolic AI faces severe theoretical and implementational obstacles, not least of wh

the specific frame problem. Although progress has been made toward a solution of th

cific frame problem, a solution to the general frame problem continues to elud

researchers. It has been argued here that the proposed solutions to the specific fram
182



 the

 pro-

ments.

nment

ted to,

s of the

known

 hope as

e rea-

hes, we

ated

in its

t it will
lem actually exacerbate aspects of the general frame problem. The source of this is the

nature of symbolic AI, namely its efforts to carve the world into individuals represented by

discrete tokens and their relations. Thus, the problem facing symbolic AI is not merely

which algorithms to use, but how it conceives the relation between representation and

world.

A general test of symbolic AI’s ability to tackle these difficulties can be found in

progress or lack of such in the field of cognitive robotics. Cognitive robotics has yet to

duce a system that can reason about, react within, and plan for dynamic environ

Approaches in robotics that depend on reliable sensors in effect reduce their enviro

to that of their sensor domains. The unexpected need not be anticipated or adap

because the state of the sensor in question reliably correlates with expected state

environment. The environment is static in the sense that all of its relevant states are 

and correspond to particular sensor states. Neither one of these approaches gives

yet that the general frame problem will be solved—in the case of cognitive robotics, th

soning abilities of the robots are not up to the task, in the case of perceptual approac

do not know if all of the relevant uncertainties of dynamic environments can be elimin

by sensing. In the end, it is an empirical question whether symbolic AI will succeed 

ultimate goal of creating cognitive agents, but there are strong reasons to suspect tha

not. 
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Chapter 5 Ecological and Evolutionary 
Alternatives to Explaining 
Semantic Information

Computational approaches generally rely on methodologically solipsistic notions about the

nature of content. ‘Meaning is in the head’ is a slogan that is often used to sumup th

eral thrust of methodologically solipsistic presuppositions about the nature of co

Rapaport’s syntactic semantics is paradigmatic of such approaches: semantics is 

from a syntactic system within the cognitive agent and does not require links to the o

world. Even attempts at symbol grounding, such as Harnad’s, understand the mea

symbols in terms of icons within the cognitive system and not by reference to the en

ment. And computationalists such as Fodor have argued that cognitive psychology re

narrow content, or content that depends only on functional role (understand in ter

input-output relations) and relations to other mental states (although Fodor seems t

changed his tune a bit, see Fodor 1994).

Although methodologically solipsistic approaches to explaining mental content 

tinue to be applied by cognitive scientists, many philosophers have come to believ

they are fatally flawed. This intuition was given expression in Putnam’s Twin E

thought-experiment (1975), and Burge’s subsequent critiques (1979, 1982, 1986) o

vidualistic accounts of mental content. These philosophers argued that mental con

wide rather than narrow in the sense that more than just the individual’s cognitive

determines content; facts about the environment of the individual are also relevant 

ting the content of mental states. Theories of wide content are ‘externalist’ in nature, 
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is to say that external facts factor into the content of mental states, and therefore that mental

states ‘are not in the head’, to use another slogan. There is an entire spectrum of ext

theories, ranging from locating semanticity exclusively in the environment (such as a

radical reading of Gibson’s direct realism) to various mixes of external and internal fa

Externalist theories also run the gambit with regard to the degree to which the

upon the notion of natural selection to explain how mental states relate to the environ

Twin Earth thought-experiments do not rely on the historical or evolutionary cons

ations for their force. But such purely ecological or relational approaches leave ope

question of by virtue of what do mental states relate to the environment. One answer

they covary reliably with environmental features, i.e., they track the environment. M

externalists, however, do not believe that this is a sufficient answer, for it leads to pa

chism. The natural next step is to say that they do so by virtue of their having been se

for how they track environmental features. Thus the prominence of evolutionary con

ations in externalist accounts.

It is important to note that externalism is not inconsistent with computationalist e

nations of cognitive function. Markers in the head can conceivably track the environ

in the sense of being reliably tokened when and only when the corresponding enviro

feature is present, and transitions between markers that track changes in the envir

can conceivably be brought about by computational processes. It is just that the con

these markers derives not merely from the internal processing, but also from their re

to the environment and the historical processes through which they were selected f

job. Hence, an externalist like Tye can imagine that what is going on in the head is c

tation without being committed to methodological solipsism. Nevertheless, accordi
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externalism, computationalism cannot explain mental content on its own, whereas external-

ism is not dependent on the mechanisms of the mind being computational.

Externalism is, therefore, a theory of semantic information, the truth of which is inde-

pendent of the truth of computationalism. Thus, if externalism is true, this fact would seem

to only imply that methodological solipsism is false, not that computationalism is false.

However, the truth of externalism does affect the nature of what computationalism can be.

A computational system must, in the light of the truth of some forms of externalism, be a

naturally selected system. This would restrict the class of computational cognitive agents,

but not prohibitively so. Presumably, computers that were designed through a process of

natural selection, say by use of genetic algorithms to select successful information-process-

ing structures, might fit the bill, depending on whose form of evolutionary externalism one

accepts.

As I will demonstrate, it is just these sorts of qualifications that indicate that externalism

as formulated by Millikan and Dretske is false. In the hands of externalists, natural selection

becomes a magic formula for producing contentful states. According to some externalists

(Dretske), it even offers something over and above artificial selection. Yet, there is no

important difference between artificial and natural selection. Natural selection is equivalent

to a search algorithm through genotype space. If a creature created through this search tech-

nique has contentful mental states, an equivalent creature created through another search

technique must also. Anything else is just magic. To illustrate this point, I will reformulate

the Swampman thought-experiment (Davidson 1986) so that in illustrating that an en

history is irrelevant to its capacity to produce mental states bearing content, it do

stretch one’s imagination or require that the entity be a copy of a naturally selected
186
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(Dretske’s objections, 1995). In doing so, I am agreeing with another externalist, Mi

Tye, who accepts that a being without a historical past can have contentful states (

Tye’s externalism relies on the causal covariance model of relation without necessa

erence to how that causal covariance came about.

On the face of it, the causal covariance model of representation leads to panpsy

The eroded surface of a rock tracks the dripping of water onto it. Tye attempts to avo

by referring to the informational function of representational structures in the mind

does not provide an account of what information is. The useful portion of Tye’s extern

is merely an outline, with the details needing to be filled in. Tye tries to fill them in w

traditional information-processing, computational processes, but this will not do. Co

tational systems suffer from a host of problems, detailed in the preceding chapter, tha

cate that they do not, and quite possibly cannot, track the environment. The appro

mechanism for Tye’s representationalism is outlined in the following chapter. Only 

organizing dynamic systems with the capacity for re-presenting internal behavior corre

lated with the environment are capable of properly tracking it. The final chapter 

among other things, examine whether such a form of externalism can adequately e

phenomenal qualities as Tye purports to have done with his representational framew

This chapter proceeds by first outlining the motivating intuitions of externalism. I 

turn to considering both evolutionary and ecological variations of externalism, princi

Dretske, Millikan, and Gibson. The evolutionary accounts fail because they subs

proper or normal function for mechanism when explaining representations. This is a

explaining how a car drives by reference to the factory procedures that produced it. O

indeed individuate mental states according to whether their underlying structures we
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urally selected, but this individuation does not map to a distinction between representa-

tional and nonrepresentational states. Finally, I will argue that Tye’s externalism mus

both its openness to including evolutionary history in the determinates of represen

and notion that computation underlies the internal processes of representations. Th

set the stage for incorporating Tye’s theory in a more complete theory of mind, on

addresses both representation and mechanism.

5.1 Twin Earth and the Case against Narrow Content

5.1.1 Putnam’s Twin Earth Thought-Experiment

Imagine a world that is a perfect duplicate of the Earth in all regards except for one. On

Earth, we have a substance consisting of H2O, which we call ‘water’. On the duplicate

Earth, or Twin Earth, they have a substance consisting of XYZ, which they call ‘wa

Water and twin water appear exactly alike in all respects, the only difference being

molecular composition. It is prior to 1750 on both Earth and Twin Earth, so they hav

to discover Daltonian chemistry, and so do not know anything more about water tha

it appears and behaves. Imagine again that your duplicate on Twin Earth thinks the t

‘water is wet’. Is he thinking the same thought as you when you think ‘water is wet’?

The answer to this question depends on what one means by ‘thinking the same th

If, by this, we mean having the same internal state, whether neurochemical or func

(psychofunctional or machine functional), then the answer is yes, because it is assum

they are microphysical/functional duplicates. But the thought ‘water is wet’ in your m

does not mean the same thing as the thought ‘water is wet’ in your twin’s mind. The r

is that they refer to different things. To see this, imagine that you are somehow trans
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to Twin Earth. You see XYZ and think ‘this is water’. Your twin sees XYZ and also th

‘this is water’. The meaning of your thought and your twin’s thought cannot be the s

because the truth value of the proposition contained in your thought is different from

of your twin’s. You are thinking that this is same substance as on Earth. So the refere

different and the difference between what you mean by ‘water’ and what you are vie

on Twin Earth can, in fact, be shown to you. 

The upshot of Putnam’s thought-experiment (1975) is that external factors cont

to determining meaning. Therefore, the nature of mental representations, narrowly

strued in the fashion of functionalists or identity theorists, does not determine me

because it does not fix reference. Further, sameness of mental representation, narrow

strued, is not to be understood as sameness of meaning. Methodological solipsis

argue that the reference of a symbol is fixed by the symbol or symbol system itsel

that, as Fodor does argue (1975), that sameness of mental representation is sam

syntactic structure. The latter is plausible. The former, for reasons discussed in Cha

is not.

5.1.2 Burge on Why Psychology Does Not Need Narrow Content

Tyler Burge (1982) has argued that not only do de re attitudes (relational attitudes, such a

attitudes about objects) vary in reference, but so do de dicto (nonrelational) attitudes. This

would suggest that a cognitive psychology would have to abandon the notion of n

content in general. Just the opposite is true, however, and many cognitive psycho

reject the idea that we must ascribe different mental states to individuals demonstrat

same behavior.
189



 imag-

gents.

havior,

do not

en indi-

 to

uli, i.e.,

in how

‘reli-

that

nt. The

v-

is.

presen-

dividu-

nalists

e mind

ich is
Burge’s response to this is that psychology is not a science of behavior so crudely

ined as mere bodily motion. It is also a science of the relations between cognitive a

Burge argues that because propositional attitudes are among the determinants of be

and that Twin Earth thought-experiments demonstrate that propositional attitudes 

supervene on brain states because of their essential reference to the environment, th

vidualistic states like brain states are not the only determinants of behavior.

To illustrate this proposition, Burge points to Marr’s theory of vision. According

Burge, such mechanisms as edge detectors make essential reference to distal stim

essential reference to the environment. Marr’s theory as a whole is intended to expla

mind/brains extract reliable information about their environments, and the notion of 

able information’ cannot be understood without reference to the environment. 

The externalist intuitions are therefore twofold. The first is that content is wide—

meaning is determined not only by internal states, but by reference to the environme

second is that wide content states not only can be incorporated into explanations of beha

ior, they must be, and that the best examples of cognitive psychology demonstrate th

5.2 Making a Fetish of Natural Selection: Evolutionary 
Approaches

If one accepts externalism, then one accepts the proposition that there is more to re

tations than their syntactic structure. What are representations, such that they are in

ated in part by reference to the environment in which they are tokened? Most exter

accept a causal covariance model of representation. A representation is a state in th

that reliably tracks an environmental feature. Their occurrences causally covary, wh
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to say that their correlation is causally related. An environmental feature helps bring about

a token in the mind, and this tokening in the presence of the environmental feature is what

tracking consists of. But since this covariance can be thwarted, say, by malfunction of the

token-producer, many externalists also append to this specification that causal covariance

exists under optimal conditions or when functioning normally.

These notions imply that there is a purpose for which a device is suited and a set of con-

ditions under which this purpose is fulfilled. The purpose of biological devices is not inten-

tional in nature—no one chooses hearts for their capacity to pump blood—rather it

function as selected for in the process of natural selection. And optimal condition

understood as those conditions for which the token-producer was selected to handle

externalists with an evolutionary bent, the evolutionary history of representations is e

tial for their individuation. How these details are spelled out varies from philosopher to

losopher. I will examine two prominent variations on this theme, one which accep

causal covariance model of representation, Dretske’s, and one which rejects this 

Millikan’s.

5.2.1 Millikan’s Misapplication of Natural Selection

Ruth Millikan (1984, 1993) has worked out a highly sophisticated account of how ‘bio

ical function’ explains the nature of representation. Her theory, however, rests on s

misunderstandings and misapplications of the mechanisms of evolutionary theory, 

ularly those of natural selection. It is also chauvinistic in its scope, failing to ascribe co

to devices that either clearly or possibly possess it, as well as liberal, ascribing con
191
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widely. To illustrate these failings, it is necessary to examine Millikan’s notion of ‘bio

ical function’ before proceeding to her discussion of content and representation.

5.2.1.1 Millikan’s Notion of ‘Function’

Biological categories, in Millikan’s theory, are not determined by membership in a cla

items related by physical structure, causal powers, or dispositions. Rather, member

determined by possession of the appropriate proper function, understood as the fu

which an item is supposed to perform or was designed to do. Like any good Darw

Millikan understands “design” in terms of natural selection. Thus, malfunctioning kidn

or hearts still have proper functions, even if they are not capable of carrying them ou

Millikan states that an item has a direct proper function only as a member of a repro-

ductively established family. To define a reproductively established family, we must fi

understand what a reproduction is. B is a reproduction of A if and only if three cond

obtain. First, B has some determinate properties in common with A. Second, that A 

have these properties can be explained by some natural law or laws operative in situ (laws

derivable from universal laws under special conditions). Third, for each of the propert

common, the laws that explain why B is like A in this respect correlate determinates

the color red) under a determinable (like color) so that whatever determinate A has, B mu

also. Although A is the model for B, B does not have to be a perfect copy of A, but the 

of variation of a property of B must differ if the corresponding property of A differs. N

reproductively established families are broken down into two types. First-order repr

tively established families are sets of items that have similar characteristics as a re

repetitive reproductions of the same characteristic of the same model(s). Examples

kan cites are specific genes and tokens of a specific word in various media (1984). H
192



order reproductively established families are defined recursively, with first-order as the

base case.

Higher-order reproductively established families are of three types:

(1) Any set of similar items produced by members of the same reproductively estab-
lished family, when it is a direct proper function of the family to produce such items
and these are all produced in accordance with Normal explanations...

(2) Any set of similar items produced by the same device, when it was one of the proper
functions of this device to make later items match earlier items, and these items are
alike in accordance with a Normal explanation for performance of this function...(Mil-
likan 1984, 24)

Examples are: hearts and kidneys, which are not copied from earlier hearts and kidneys, but

rather result from the proper functioning of genes that were copied; any instinctual behav-

ior; and learned behavior when it results from training or trial-and-error due to mechanisms

that have as a proper function the reproduction of successful or rewarded behavior. Milli-

kan loosens conditions (1) and (2) with a third:

(3) If anything x (a) has been produced by a device a direct proper function of which is
to produce a member or members of a higher-order reproductively established family
R, and (b) is in some respects like Normal members of R because (c) it has been pro-
duced in accordance with an explanation that approximates in some (undefined) degree
to a Normal explanation for production of members of R, then x is a member of R. (Mil-
likan 1984, 25)

Millikan acknowledges the vagueness of this condition, suggesting it maps to vagueness in

assigning biological categories to malformed items.

To define a direct proper function, Millikan first establishes the notion of an ancestor

of a reproductively established family. There are three ways for an item to be an ancestor

of x: if it is a member of a first-order reproductively established family from which x was

derived by reproduction or a series of reproductions; if it is a temporally earlier member of

a higher-order reproductively established family and was produced by an ancestor of the
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device that produced x; if it is a temporally earlier member of the same higher-order repro-

ductively established family as x and x is similar to it according to a proper function of a

producer that produced both.

Now we can define a direct proper function. F is a direct proper function of x, with x

belonging to reproductively established family R in accordance with R’s Normal char

C, if and only if: ancestors of x performed F; the direct causal connection between hav

C and ancestors of x performing F explains why C correlated positively with F over a 

of items S that included these ancestors and other things that did not have C; and on

nation that can be given of x’s existence is that C correlated positively with F over S, wh

either caused the reproduction of x or explains why R proliferated. To distill this verbiag

we can understand a direct proper function in terms of a simple example. Enabling people

to screw screws is a direct proper function of a screwdriver, because prior example

screwdrivers performed this function, which gave them the characteristic of being useful to

screw screws, and because of this were reproduced. 

The notion of a Normal explanation keeps cropping up, and it is key to Millikan’

account. A Normal explanation is not an explanation in terms of statistical averages

an explanation of “how a particular reproductively established family has historically

formed a particular proper function” (Millikan 1984, 33). Normal conditions for biological

items are conditions to which the item is adapted, including both environmental and

nal conditions.

Proper functions that produce items bearing relations to the environment or other

are relational in nature. Millikan’s example is of the chameleon’s pigment-altering me

nism. When a device with a relational proper function produces something specific ac
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ing to its relation with a specific item, the device has acquired what Millikan calls an

adapted proper function. To continue with Millikan’s example, the chameleon’s pigme

altering device has the adapted proper function of producing brown pigment in the pre

of a brown environment. What is produced in this situation is termed an adapted device.

Adapted devices have proper functions that are derived from the proper functions 

device producing them, and these proper functions are not merely the adapted prope

tion but the non-contextual proper function. The proper function of the pigment chan

brown is not to blend in with brown specifically, but to blend in with the environm

These are derived proper functions.

Finally, the Normal explanation of an adapted or derived proper function derives

the Normal explanation of the relational proper function plus the specification of the

ticular situation as a Normal condition. Given these definitions, I turn now to how Mill

applies them to understanding mental content.

5.2.1.2 Millikan’s Representational Hierarchy

Ruth Millikan has argued that there exists a hierarchy of types of representations—le

from mere reflections of the environment built into creatures to the most sophistica

thoughts in humans—instead of a simple, discrete distinction between the represent

and the nonrepresentational (Millikan 1993). This hierarchy is meant to explain how

cesses of information-transformation’ arise.

At the lowest level are what Millikan terms ‘tacit suppositions’. Tacit suppositions

those aspects of organisms that are so uniquely suited to a particular environment th

could not function normally outside that environment. The close fit of these organismi
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ikan’s
tures to their environment enables observers to deduce the features of the environment. Mil-

likan contends that there are two cases in which these features “represent” the enviro

The first of these cases is the apparent mapping of an organism’s features to asp

the environment. For example, Millikan considers the motor homunculus in the cer

cortex of humans to be a representation of the human hand (as well as other portion

body), and the biological clocks of animals to be representations of the length of 

According to Millikan, this type of tacit supposition supports the counterfactual: if the e

ronment were different in a particular dimension, the tacit supposition would be diff

in its corresponding dimension.

The second type of tacit supposition appears whenever a mechanism is requ

implicitly represent aspects of the environment in order for an inferencer to function 

erly. She defines an inferencer as “a mechanism that, working properly, derives ne

representations from old true representations” (Millikan 1993, 98). Millikan gives a

example the edge detectors in the visual system that “presuppose” the features of e

the external world.

Intentional icons are the next step up in the hierarchy. Whereas tacit suppositio

built into organisms, intentional icons are acquired by organisms. Icons map to the

ronment according to a ‘rule of projection’, a mapping of variances in environment to

ances in icons. Furthermore, intentional icons only exist where there are mecha

designed (whether in the evolutionary sense, or by humans) to bring them about (n

essarily by causing them). When these mechanisms are successful, they “bring it 

that the icons to map to the environment. This does not mean that the presence of the

iconed must cause the icon to occur. Images on the retina are intentional icons in Mill
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estimation, because the eye lens that produces them evolved for the purpose of establishing

a mapping between the world and the image on the retina (even though the actual images

are themselves acquired, not evolved). Finally, an intentional icon must be used by an

organism for guidance in its environment; there must be a “consumer” of the icon. 

further intentional icons are the dances of honeybees and the magnetosomes1 of certain

bacteria.

Intentional icons differ from Dretske’s notion of ‘natural information’ in that they ne

not perfectly match the environment, i.e., be perfectly reliable, in order to “icon” the e

ronment. Millikan explicitly rejects the causal covariance model. An intentional icon

fail in the vast majority of its tokenings to guide an organism, yet still map to the env

ment. In fact, the icon need not map at all and yet still have content, at least for the c

consumer:

the “content” of an intentional icon is described by telling what sort of structure or
ture would have to be in the organism’s environment, for the icon to map onto 
mapping rule, in order for its consumer to use it successfully in the normal way, th
the way that historically accounted for the interlocking design of producer, icon,
consumer. (Millikan 1993, 100)

Note the subjunctive mood in the definition. The intentional content of an icon doe

consist of a current mapping between icon and world. It must have a mapping that ac

for how it was selected in the past. Nor need the organism actually be guided by the 

the present: “we should refer not to how the organism is in fact guided, but to the g

principles in accordance with which it is designed to be guided . . .” (Ibid).

1.  organs whose sensitivity to magnetic fields causes the bacteria to move toward ge
netic north
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The dances of the current generation of bees could universally fail to map to locations of

nectar, and nonetheless be intentional icons. 

From intentional icons, we move to representations proper. Millikan defines represen-

tations as those intentional icons that have the function of serving in mediate inferences.

Mediate inference is the process of combining an intentional icon with other intentional

icons to form new pieces of information. An example provided by Millikan is when an

organism combines mental maps of the environment and correlates the information in each

map: combining a map of where predators are with one detailing the location of food

sources to determine how close predators are to food sources. These maps are not literally

pictures of the world; they may be realized, for example, as activation patterns in neural

nets. Millikan even holds that the way information is stored in neural nets could be thought

of as an inference process, as was noted in the previous chapter:

Nor is there any reason why the results of superpositional storage of information in
neural nets should not be considered to yield conclusions of inference. That superim-
posed information gets stored correctly in the same net with certain old information
clearly depends upon there being an overlap in semantics on some level . . . (Millikan
1993, 104)

Farther up Millikan’s ladder of representation, we meet with beliefs. Unlike intenti

icons and representations, beliefs (construed as ‘sentences in a language of thoug

be negated. Nevertheless, the semantic information that characterizes a belief has it

in the lower level of ‘representations’. Beliefs are, according to Millikan, a subset of 

resentations’, which are themselves a subset of intentional icons. Accordingly, wh

Millikan has provided an adequate account of what information processing is depen

the account she has given for intentional icons and representations. As I will now argu

inadequacy of this account is revealed by its implausible implications.
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5.2.1.3 Millikan’s Liberalism

Faced with the question of how signals acquire semanticity, Millikan begins her answer

with the implicit assumption that only organisms and artifacts can have contentful states.

Tacit suppositions require an underlying design, whether produced by natural selection or

human action. Yet, this requirement is insufficient to restrict tacit suppositions to organ-

isms and artifacts. For example, the development of crystals is a selective process, and the

design of the crystals enables scientists to read off features of the environment in which the

crystals developed. Similarly, a rock positioned with half of its surface exposed to a water-

fall will be shaped in such a way that the exposed portions reveal the influence of the water.

The light of distant stars provides tacit suppositions about the nature of the stars emitting

the light. In fact, it is questionable whether there exists a natural formation that does not

bear tacit suppositions revealing facts about the formation’s environment.

A further restriction on tacit suppositions is that the absence of the “represented”

ronmental feature causes them to cease “functioning properly.” A rock does not h

function that it does properly or improperly. If the waterfall that had smoothed a rock’s

face were to dry up, the smoothed surface of the rock would not cease functioning pro

because there is no sense in which it is functioning at all. Unless, of course, the roc

being used as part of a human artifact. The human intent would then impart desig

hence proper function, to the rock. But this proper function only exists relative to the i

tions and actions of an intelligent agent; a human must intend for the rock to have a fu

and place the rock in an apparatus in which it carries out that function. This could b

simple: just placing the rock beneath the waterfall in order to very roughly estimat

waterfall’s characteristics. Suddenly, a rock placed by a human bears a tacit suppo
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whereas the rock that just happened to be in a similar place does not. If this smacks of being

ad hoc, that is because it is. And the account only gets stranger when we consider how nat-

ural selection, rather than human intervention, creates tacit suppositions.

Tacit suppositions developed in species through natural selection do not have proper

functions by design. That the color pattern of the Viceroy butterfly ‘mimics’ that of

Monarch butterfly is due to a long process of selection, as well as possibly a fortu

mutation in the Viceroy’s line resulting in the resemblance (Millikan 1993, 98). Ada

tionists consider the Viceroy’s color pattern as having been ‘selected for’ its resemb

to the Monarch’s. This phrase, and the phrase ‘designed for’, obscure important diffe

between the intentional activity of humans and the blind process of natural selectio

objects in nature, as well as human artifacts, have a passive design, namely a struct

causal description of them as a system. But only human artifacts are designed in th

of being created to fulfill a particular function desired by their creators. Thus, what d

mines the proper functions of organisms’s attributes is not that these attributes have

sive design, or that they were created for those functions, but that they contribute

organisms’s ability to stay alive and reproduce. The unanswered question is why this 

them contentful, whereas the attributes contributing to a rock’s continuing to be a ro

not.

Intentional icons resemble tacit suppositions in that they map to some feature 

environment, and rely on a notion of proper function to distinguish them from the pr

ties of rocks. A further constraint is that they ‘guide’ organisms, although

we need not require that the guided mechanism reside in the same individual 
icon-producing mechanism. The production and “consumption” of the icon ma
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accomplished by any mechanism designed, biologically or some other way, to cooper-
ate in the iconing project. (Millikan 1993, 99)

Here again, Millikan equivocates on the meaning of ‘design’. The dances of bees indi

the location of nectar are not designed by the bees in any sense resembling the de

maps by humans.

Millikan also equivocates on the notion of ‘to use’. When intentional icons map to m

than one environmental feature, the function of the icon is to be determined by wha

used for. The example she gives, however, reveals how little this notion of ‘use’ rela

what is meant by ‘used’ in “he used the screwdriver to tighten the screw.” She 

Dretske’s example of magnetic-field-sensitive bacteria, which are drawn away by m

tosomes from the surface of the water in which they reside, and, thus, away fro

oxygen that is toxic to the bacteria. In Millikan’s parlance, these bacteria are ‘guide

their magnetosomes; the magnetosomes are ‘used’ as intentional icons:

Considered as an intentional icon, the pulling of the magnetosome has just one
tional content. It intentionally icons the more-oxygen/less-oxygen polarity, for b
wrong about that is what would guarantee its failure to perform its normal func
(Note that it is not one of its functions, for example, to move the bacterium either 
or toward geomagnetic north—any more than it is one of its functions to move it to
true north, toward molten rock or toward snow (the arctic). None of these figures
causal chain that helps effect its survival. Each is merely a correlate of performi
true biological function.) (Millikan 1993, 101)

It is odd that Millikan would use this as an example of an intentional icon, for presum

the magnetosome is an evolved, not an acquired mechanism. This, however, is 

strangest aspect of Millikan’s account. That the pull of the magnetosomes toward ge

netic north does not figure in a causal chain effecting the survival of the bacteria i

simply false. Moreover, that a simple causal mechanism such as this would be cons
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‘guiding the organism’ means that any internal cause of external behavior is a fo

‘guidance’.

Millikan's conflation of the meanings of ‘use’ and ‘cause’ has serious consequenc

the interpretation of animal behavior. Suppose we accept the idea that bacteria are 

magnetosomes to move away from oxygen. The debate whether certain primates u

tentful signals then becomes moot, for all acquired modes of dealing with one’s en

ment must be considered contentful. How would we distinguish between primate to

and the ‘use’ of hormones produced in response to environmental conditions?

Millikan’s treatment of representations only compounds the difficulties arising f

her treatment of intentional icons. Although Millikan intends her notion of represent

to accord with the common understanding, her definition of ‘intentional icon’ opens 

the flood-gates for what can count as a representation: “What makes an intentional ic

a representation is that one of its various jobs is to combine with other icons to pr

icons carrying new information” (Millikan 1993, 103). In a footnote, Millikan adds that

combination must produce either new information in the form of another intentional 

or an action based on the new product. Therefore, in addition to overlapping mental

secreted hormones that combine their effects must also be considered representa

fact, every set of molecules that can combine to produce an effect different from the

rate effects of the elements of the set, or to produce a new molecule, counts as a re

tation—assuming, of course, that these molecules perform some function in the bo

Millikan’s concept of representation extends from mental maps in the brain to molecu

the foot. This leads to the curious conclusion that, whereas, according to Millikan, th
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oration change of the chameleon is not even an intentional icon, the molecular combina-

tions that cause the change are actually representations.

Millikan’s absurdities are multiplied further if we also accept the position of molec

Darwinism detailed earlier. Molecular Darwinists hold that the molecular processes le

to the appearance of DNA and RNA are not a product of mere chance combination

primordial soup; rather, they are a result of natural selection (Eigen 1992). Extendin

ural selection to the molecular level means extending the notion of normal function t

level as well, and similarly extending Millikan’s meaning of intentional icon and repre

tation. The conclusion then must be that pre-organismic molecular strands can have

sentations. What reason would Millikan have now for not granting that crystals 

intentional icons and representations, given that crystals are themselves produced 

a form of selection?

Rather than a hierarchical account of how representations arise in organisms, M

has produced a form of panpsychism. Molecules have content, and combinations of

cules are representations. The only theoretical barrier between hormones and thou

that the latter can be negated. I take this inadvertent panpsychism to indicate a radic

ure in Millikan’s theory. The question is why Millikan’s account collapses so easily in

position she clearly does not wish to advocate.

One source of this failure is her effort to take Dennett’s Intentional Stance serio

One of the tenets of the Intentional Stance is that the distinction between ‘origina

‘derived’ intentionality is illusory. Searle (1992), who defends the distinction, maint

that humans (and other beings like us) have ‘original’ intentionality, that is, intention

not derived from the interpretation of our behavior by some other being. Computer
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similar artifacts, on other hand, do not actually possess intentional states. Instead, their

intentionality is derived from human interpretations of their behavior, which describe them

as if they possessed intentional states. In contrast, Dennett has long advocated the position

that if a system can be described as if it had intentional states, and any other description,

such as of its physical make-up or of its design, leaves out something captured by the inten-

tional interpretation, then the system possesses those intentional states in the same sense

that humans do (Dennett 1981, 1995). To behave as if one has intentional states is to have

intentional states:

To a first approximation, the intentional strategy consists of treating the object whose
behavior you want to predict as a rational agent with beliefs and desires and other
mental stages exhibiting what Brentano and others call intentionality.

. . . any object—or as I shall say, any system—whose behavior is well predicted b
this strategy is in the fullest sense of the word a believer. What it is to be a true believer
is to be an intentional system, a system whose behavior is reliably and voluminou
predictable via the intentional strategy. (Dennett 1981, 132)

Dennett is not merely saying that intentional systems belong to the class of objects t

intentionally interpretable (the second half of the second paragraph), but that if a sys

behavior is intentionally interpretable, then it is a true believer and hence an intention

tem. The intentional stance is not merely a useful strategy, it is a strategy that revea

qualifies as an intentional system. One plausible interpretation of Dennett’s formulat

that it is simply a tautology, stating that a system whose behavior is well predicted b

intentional strategy is a system whose behavior is reliably predicted by the strategy

Dennett (1987) denies being a fictionalist, one who interprets the notion of belief as a 

falsehood; the reason he is not a full-blown realist about propositional attitudes is t

believes that belief/desire psychology will not end up being correct about how the in

states that cause behavior are individuated. Therefore, in Dennett’s estimation, all s
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that can be interpreted as intentional systems are true intentional systems. Whereas Dennett

specifically refers to beliefs and desires, Millikan extends intentional interpretations to the

level of ‘icons’ (although this is in the spirit of Dennett's explanation of the origin of in

ligence: successively dumber homunculi at the lower levels of the hierarchy of in

gence).   

The intentional stance, however, is not taken by Dennett to be a definition of 

makes something a belief. Dennett is defending a strategy that reveals whether a 

possesses beliefs, not an account of what mental states really are, which accounts

hesitation in his work on the intentional stance to present an alternative to belief/desir

chology. Yet, the latter is what Millikan must provide when she applies the intent

stance to hormones and magnetosomes. An intentional stance toward hormones, h

does not buy the endocrinologist much in the way of explaining their function. In fac

functions of hormones are not to represent conditions in the environment affectin

body, but rather to regulate the body’s behavior. Whereas the exact function of a 

cannot be pinpointed through chemical analysis, the functions of hormones can.

Without intentionalizing hormones and magnetosomes, however, Millikan cannot

a seamless account of the appearance of representations and ‘sentences in the lan

thought’. Representations are supposed to be just those intentional icons that ha

normal function ‘serving in mediate inferences.’ But if the icons themselves do not

content, then how could the fact that they combine to produce new icons possibly i

content to their product? At least Millikan would have to have an account of how the

tent appeared from this combination. Here, Millikan is as stuck as Dennett when he t

explain the origin of intelligence via a chain of successively dumber homunculi. Each
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in the chain is a change in degree—except at the point where an entity with no intelli

gives rise to one with just a smattering of it. How this happens remains a perfect m

in Dennett’s writings. To avoid this, Millikan has adopted the apparent strategy of de

such a change in kind occurs. But it is this change in kind that must be explained, if Mi

is to avoid panpsychism.

5.2.1.4 Millikan’s Chauvinism

It is important to keep in mind that natural selection does not create anything. It merely

determines what will undergo the next phase of mutation and crossover through reproduc-

tion. Attributes of organisms might be ‘selected for’, but they are not ‘created for’ any

ticular function. Therefore, there is a clear limiting case for Millikan’s notion of ta

suppositions: the initial appearance of an attribute. In fact, it is unclear where this lim

case ends. It is unlikely that a trait will be clearly ‘selected for’ in the first generation

to the superabundance in nature of factors that could skew the results of the trait’s 

butions. Natural selection generally takes a long time (or many generations, if you

virus). Even if such factors did not happen to affect the outcome, there is an epistemo

problem determining whether a trait was ‘selected for’ in only a few generations:

cannot control for all the possible factors affecting selection, and, therefore, canno

count their possible involvement. So tacit suppositions don't appear until after a mu

+ n generations of organisms with that mutation. This is in keeping with Millikan’s no

of proper function, which requires that whatever possesses a proper function does

virtue of being a member of a reproductively established family associated with a ch

teristic that is correlated with the proper function. It takes time for these correlations t

above the noise.
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Therefore, according to Millikan’s theory, newly emergent functions (in the mecha

tic sense) cannot have intentional content. This does not imply the possible existe

zombies, creatures with all the trappings of a representational system but without rep

tations.1 Brains don’t arise in a single mutation. But this also does not imply that the n

emergent functions are insignificant. Imagine a mutation that gives rise to primitive

detectors, or to the ability to produce the first mediate inference.

Not only might the first n generations of an organism be considered lacking a part

representation, but this could conceivably extend throughout the entire history of the o

ism. Imagine a mutation occurs resulting in a new mechanism in the organism that pro

tokens having an abstract mapping to environmental features. After this event, se

pressures are alleviated. Even though the organism uses the token for guidance (

linked in with its other functions), perhaps only occasionally, the mechanism that pro

the token is not selected. It being produced by a dominant gene, it finds expression a

passed along to the organism’s progeny. Given the lack of selection pressure, it is 

unlikely that the gene will proliferate, and highly likely that it will get bred out. But not n

essarily. And throughout its history, it will have no proper function, and therefore no in

tional content.

Imagining such a scenario takes less of a leap than imagining Swampman—but l

so nonetheless. Swampman, as Davidson imagined him, is a microphysical duplic

say, Davidson, created by a lightning strike in a swamp (Davidson 1986). He has n

lutionary history, no proper functions. Yet, he behaves exactly like Davidson. In Sw

1.  Zombies are usually considered to be microphysical duplicates with no qualia. Millikan opens up the pos-
sibility of zombies with no representations, let alone qualia.
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man’s brain is a motor homunculi just like Davidson’s. Yet, according to Millikan’s the

it is not a tacit supposition, even though it not only matches Davidson’s motor homu

which is a tacit supposition, but also maps in practice to Swampman’s motor functions

Swampman’s visual system creates a 2 1/2-D sketch of the world (assuming Marr’s 

is correct), which not only is a perfect copy of Davidson’s 2 1/2-D sketch, but also en

Swampman to maneuver in his environment. Yet, according to Millikan’s theory, it is

a representation. Something is amiss here.

We cannot extend Millikan’s theory to cover Swampman by arguing that bec

Swampman is a duplicate of Davidson, the Normal explanations of Davidson’s func

extend to Swampman’s. The reason is that Swampman is not a reproduction of Davidson

in Millikan’s sense of the term. There is no causal link from Davidson to Swampman

that whatever properties Davidson has, Swampman must also possess, which then 

the third condition of being a reproduction. Nor are Davidson and Swampman both r

ductions from the same model. Therefore, they cannot be members of the same rep

tively established family, and so Normal explanations cannot be given for their simi

or extended to Swampman based on similarity.

Nor, given Millikan’s theory, can we dismiss Swampman as missing something t

essential mechanistically or phenomenally for the production of representations. Ha

Swampman’s history been like Davidson’s, the functioning of his mind/brain would 

duce representations. He’s got what it takes, except for his lack of breeding.

Millikan’s theory fails to tell us what we want to know: what it is to represent so

thing. How is it that a tokening of some sort “maps” to the world? In one sense, Mil

has a straightforward answer: isomorphism between token and world. Requiring m
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isomorphism leads to panpsychism, so she reduces the set of valid isomorphisms by means

of an additional requirement, that of having been selected for. Presumably, this reduces the

set of entities capable of representation to the known set of organisms bearing representa-

tions. So would a host of other artificial restrictions. For example: only living things with

a certain level of complexity have representations.

Millikan’s theory does not really explain the notion of representation as it pertain

the understanding of the mind. Instead, Millikan has identified a class of items—t

capable of being mapped to the environment—that have contributed to the evolut

success of organisms. Millikan is right when she says that the meaning of “represen

is not written in stone, but one would hope for more than this.

5.2.1.5 Missing Information: What Millikan Hasn’t Told Us about Information

Computationalist approaches to explaining cognition were criticized in Chapter 2 for

having failed to develop a theory of semantic information. Millikan’s theory would ap

to solve this problem by eliminating the need for such a theory, the correlation of to

and environment being established by the evolutionary history of the tokening mecha

Millikan, however, reveals that her theory rests on an undefined notion of semantic 

mation when she writes: “What makes an intentional icon into a representation is th

of its various jobs is to combine with other icons to produces icons carrying new informa-

tion” (Millikan 1993, 103). Here again, we have the elusive notion of a token carrying

information. This is not meant to say that Millikan could not provide a theory of sem

information, only that she, like the computationalists, must.
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5.2.1.6 Conceptual Problems with Millikan’s Account

Natural selection must stamp its imprimatur on a “mappable” token in order for su

token to be a representation. Why? What is it about natural selection that not only 

lishes that something is a representation, i.e., enables us to read the historical recor

token and understand what it was used for and therefore is used for, but also grants repre

sentational status? A clue can be garnered from Millikan’s understanding of how n

selection works:

economy dictates that traits serving no purpose are highly likely to disappear, no
essarily because they get in the way, but because that section of the genetic codcould
serve a useful function if coded otherwise and sooner or later Nature will stumb
this discovery. (Millikan 1984, 27)

Natural selection is not really a messy process that often fails to clean up after itself. R

it is guided by a principle of economy that guarantees that, sooner or later, what is not

will disappear. It is this guarantee that lends natural selection its special powers. Othe

the link Millikan posits between token and environment is broken; it becomes merel

morphism, which she recognizes is not sufficient. All functions that are reproduct

established are useful and all useful functions are reproductively established.

Millikan is wrong, however, in her characterization of natural selection. That na

selection is parsimonious in its use of the genetic code is contradicted by junk DNA—

that serves no useful purpose, and, in fact, constitutes the majority of DNA. Daw

(1976) has offered one explanation for the existence of junk DNA, namely that it is a

loader that serves its own purpose, having been adapted to ride along with useful

That natural selection cleans up after itself is quite apparently false. No one is expect

demise of the appendix. Vestigial organs are not uncommon. The idea that natural se

eventually stumbles on inventions shows an even deeper misunderstanding.
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As Millikan acknowledges, natural selection does not create diversity, but only operates

on a given pool of genes. Evolution is dependent largely on mutations to feed the gene pool,

although such factors as random drift and pleiotropy contribute. Mutations are unbiased in

the sense that they do not favor producing useful traits. Quite the contrary, they usually pro-

duce useless or even harmful traits. Suppose, however, we were given infinite time to cycle

through all the possible mutations. If evolution were like this, then, yes, in all probability

we would hit upon a useful mutation. Evolution, however, is a constrained search through

gene space. It does not have the luxury of reengineering something from scratch, but rather

must apply, through mutation, incremental modifications to existing genetic traits. If it

takes a particular path in gene space, it may have closed off another possibility; it is not an

exhaustive search of gene space. There is no guarantee that it will hit upon a use for a par-

ticular section of genetic code.

Not only is the link between evolutionary history and representation irrelevant with

regard to explaining what representations are, but the link cannot even be established as

Millikan wishes. Perhaps causal covariance can explain what ‘being selected for’ ca

5.2.2 Dretske’s Representationalism

In Chapter 2, I argued that Dretske’s causal covariance model of semantic informatio

inadequate, because, in part, the requirement for causal covariance to obtain was to

and as such, his theory had difficulty explaining misrepresentation. In Naturalizing the

Mind (1995), Dretske more explicitly weds his causal covariance model with teleolo

concepts from Darwinism. He retains the notion of natural information—tokens are i

mational because they track environmental features by virtue of causal relations with
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These causal relations, however, are due to design. Tokening mechanisms are selected for

their ability to token reliably in the presence of the represented object.

If causal covariance were all there was to the story, then we would be stuck with the

problem of misrepresentation. Teleological explanations, however, allow Dretske to handle

this problem. Tokenings are causally correlated with the presence of environmental fea-

tures under what Millikan would call Normal conditions. Misfirings of tokens result under

abnormal conditions, and so do not break the causal covariance. Dretske expresses this by

saying that tokens and environmental features naturally covary.

Dretske’s later theory is twofold: 

1. All mental facts are representational facts.

2. All representational facts are facts about information functions. (Dretske 1995

Stated otherwise: representation is causal covariance under natural conditions, 

mental states are representational states. Dretske is arguing both for externalis

attempting to show how externalism can yield a complete theory of mind, one that en

passes experiences and qualia. Although I will argue that Dretske’s version of extern

falls prey to many of the arguments against Millikan, his notion of explaining experi

in terms of representation has merit in itself.

5.2.2.1 What Is a Representation?

Dretske’s formal definition of what it means for a system to represent something is a

lows:

A system, S, represents a property, F, if and only if S has the function of indicating
viding information about) the F of a certain domain of objects. The way S perform
function (when it performs it) is by occupying different states s1, s2, . . . sn, correspond-
ing to the different determinate values f1, f2, . . . fn, of F. (Dretske 1995, 2)
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This definition encompasses the two aspects of Dretske’s notion of representation: 

covariance (“indicating” or “providing information”) and having been selected for 

(“function of”).

There are two kinds of representations. The first kind, systemic, has its indicator

tion by virtue of the system of which it is a state. It indicates because the system is s

structed as to produce this state in the given situation. Dretske’s example is the sta

thermometer indicating that it is 32° F. The constituents of the thermometer will prod

distinct behavior when its environment is 32° F. The second kind, type representatio

responds to the label placed on the thermometer, such as ‘32’ or ‘Freezing’. The 

hardwired, the second acquired. They correspond to phenomenal and conceptual re

tations, respectively. This is the crux of Representationalism: all phenomenal exper

are actually representations of the first sort. They are all sensory in nature, and hav

content determined by the biological function (understood teleologically) of the sen

organs producing them. 

Phenomenal experiences have the job of representing properties of objects, n

there are objects possessing these properties. An experience of redness indicates 

ence of redness, that this is red, but does not indicate that this apple is red. Misrepresenting

occurs when there is no this in the world corresponding to the experience’s indication o

property, or when one is wrong about this, i.e., this is blue, not red. Discriminating tha

something is a particular shade of red, on the other hand, requires the concept red. Organ-

isms that do not have concepts would still be able to experience different shades of re

presumably, react differently to them, but could not form the representation that ‘X is
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Introspection, according to Dretske, is not an inner sense directed toward experience.

Instead, it is a conceptual representation of experiences (sensory representations) as repre-

sentations: “If E is an experience (sensory representation) of blue, then introsp

knowledge of the experience is a conceptual representation of it as an experience 

(as a color)” (Dretske 1995, 44). The act of introspection is not an additional exper

that one has of sensory experiences: “One can, by introspection, come to know abou

rience, but the knowledge is obtained without any experiences beyond the ones one

to know about” (Ibid, 63). Presumably, the act of conceptualization is not an exper

that can be introspected, because it is not a sensory act that produces experiences.

nothing like what it is like to conceptualize, no associated qualia.

Dretske’s Representationalism denies to qualia the privileged access that most 

ophers have come to associate with the concept. According to Dretske, qualia are 

the properties that objects are sensorially represented as having. There are two as

how something, A, looks phenomenally to someone, S, when A is an X:

1. A looks to S the way Xs normally look to S.

2. A looks different to S from other As.

These aspects are knowable by others. Knowing the normal functions of other crea

sensory systems and knowing the actual discriminatory abilities of these systems t

what the creatures’ experience are like. There are a number of important conseque

these stipulations. First, if one cannot discriminate between different kinds of As, no

can look to one as an A. Second, changing the discriminatory capability of an org

does change the organism’s qualia, but it does not change it into qualia that are like

of creatures with similar discriminatory abilities but whose normal function is not sim
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to the normal functioning of first organism. Dretske’s example is of a speedometer th

register floating point values, such as 77.75 or 78.0 m.p.h., compared to one that on

isters discrete steps, say from 77 m.p.h. to 78 m.p.h. If damage causes the first spee

to no longer be able register increments of less than 1.0 m.p.h., its experience of 78.0

is nonetheless not the same as the second speedometer’s experience of 78 m.p.h. T

aged speedometer retains its function of providing more precise information than th

one in spite of the damage to it.

Dretske’s representational theory of qualia conflicts with the strongly-held intu

that we cannot know ‘what it is like’ to be a creature with sharply different experie

from ours. Frank Jackson’s (1986) thought-experiment about a scientist, Mary, who h

direct experience of color, is one expression of this intuition. Jackson imagines a sc

who has grown up in isolation from colors, but who knows everything there is to k

about the objective aspects of color and experiencing color—the various wavelength

ciated with it, the nature of reflectance and illumination, how the brain creates repre

tions of color, etc. Jackson intuits that this scientist is still missing information about c

namely, what it is like to experience it. The point of this argument is to show that ex

ences cannot be reduced to objective properties like brain states. Knowing everythin

is to know objectively cannot tell us what it is like to experience color, or so the argu

goes.

Dretske’s argument against this intuition is that one can extrapolate from one’s

experience and the given objective knowledge to conceive of what it is like experience

others experience. Dretske imagines Mary trying to understand what it is like for a do

to experience through electric sense (its ability to sense electric fields). According to
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resentationalism, what the dogfish represents in its experience is not an electric field, but

rather a geometric configuration—the information that the electric field provides thro

the dogfish’s electric sense. If Mary knows the shape that the field is represented a

can test to find the discriminatory abilities of the dogfish, then she knows everything

there is to know about a dogfish’s experience of electric fields. The key to the argum

that the dogfish does not represent electric fields as electric fields.

Dretske acknowledges that there is one thing that Mary cannot do that dogfish can

the conceptual knowledge about their sensory representation that this has pattern P. Mary

cannot introspect a dogfish’s experience, but, nonetheless, she knows all there is to

about what the dogfish is experiencing. This is because introspection is not itself e

ence. So while there is something the dogfish can do that Mary cannot, there is no 

ence associated with this action. This is odd, to say the least.

Consider pains. Dretske contends that pains are representations of bodily states.

consciousness of the bodily state that the pain represents. A pricking feeling is a rep

tation of being pricked. Phantom pains are representations of states for which no this exists.

It is possible to know what pains in other organisms are like through the usual method

what is it like to have a pain in a poison sac? Well, it is like having a pain that indica

about your poison sac. But I don’t have a poison sac. So, it is like having a pain in 

thing that is like having such and such connections to your body and being filled with

son. So now I know everything I need to know about what it is like to have a pain in a p

sac. Except, for some reason, I can’t tell whether my abdominal pain is different from a

in a poison sac. I can’t seem to make this discrimination. This is an intuition about wh

can know, and it conflicts with Dretske’s. According to Dretske, I can know what it is
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to have a pain in my poison sac if I can know what such a pain would indicate—bur

tearing, poking, pricking. But what if a pain in a poison sac is not like any of these. 

if there are quite different connections in a poison sac bearer’s body from those in

and these connections cause a different kind of pain. How would I know what this p

like? Dretske must assume that such cases are impossible.

Can we even know what a burning sensation in the abdomen is like without h

experienced burning sensations? A burning sensation does not indicate burning in th

Nor does it indicate a particular pathology, as this is conceptual knowledge. How doe

discriminate between a burning sensation and a pricking sensation if one has not 

enced either? Imagine Mary grew up in a padded world and had never been pricked.

she know what it is like for a dogfish to be pricked? If not, can externalism be true wi

the objective knowability of experience?

5.2.2.2 The Inaccessibility Defense of Phenomenal Externalism

In his presentation of Representationalism, Dretske takes as granted Twin Earth co

ations about the nature of thought, and assumes that thoughts do not supervene o

states. Dretske’s Representationalism is a theory about the nature of sensations, of

ences, that they are representational in character. Even among Externalists, the not

sensations are external in nature is generally rejected. Dretske contends that if one 

externalism about thought, there is no reason to reject externalism about experien

argument hinges, ironically enough, on the inaccessibility of certain aspects of exper

Take the usual suspects from Twin Earth examples, Fred and Twin Fred in this

but have them look at the same stuff. Fred thinks it is flim. Twin Fred thinks it is flam.
217



ve it

e-

Fred,

lities of

t expe-

f key.

ware

asked

ge of

es that

 lack

ever,

ne can

’ and

aste in

nt. We

rience

lity Q:

40).
concepts they apply to their experiences of the stuff are different, so the stuff will seem, in

the doxastic sense of ‘how they believe it to look’, different to them. Fred will belie

looks like flim, whereas Twin Fred will believe it looks like flam. How it looks phenom

nally to each of them, however, is a different matter.

While it is possible that the stuff looks phenomenally the same to Fred and Twin 

Dretske argues that they cannot access this fact: “The access one has to the qua

one’s experience . . . is only through the concepts one has for having thoughts abou

rience” (Dretske 1995, 134). Consider someone who has no notion of a change o

When listening to a symphony, they will hear a change of key, but they will not be a

of this. If asked whether they heard a change of key, they will answer no. If Fred is 

whether the stuff looks like flam to him, he will also answer no. So far so good; chan

key is a concept that one has to acquire. But Dretske goes further than this. He argu

the inability to apply the concept reflects a lack of discriminatory capacity, not just a

of the right label. This is no doubt true for identifying a change of key. Dretske, how

argues that this applies to such rudimentary discriminatory abilities as taste. That o

distinguish between Coke and Pepsi, without having the labels or concepts ‘Coke

‘Pepsi’ in one’s repertoire, indicate that one has some sort of conceptual scheme (t

this case) by which to discriminate them.

There is one more leap that we need to accept in order to finish Dretske’s argume

must accept that being unaware of quality Q, the quality of ‘sameness’, about expe

X, as Fred and Twin Fred are, implies that experience X does not appear to have qua

“From a subjective standpoint, it will be as if their experience . . . was not Q” (Ibid, 1
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Dretske’s conclusion is that because there is no way that they can be aware of the sa

of experience, we shouldn’t suppose it is the same.

This is meant to establish externalism about experience by offering a palatable di

tion. If one accepts that qualia are essentially knowable, then the only way to know th

through beliefs, and beliefs are externally grounded. On the other hand, if one den

knowability of qualia, then we needn’t conclude that qualia are necessarily the sa

microphysical duplicates when they experience the same thing.

5.2.2.3 The Inaccessibility Defense Cannot Be Made A Priori

There are two important claims embedded in Dretske’s inaccessibility argument. Th

is that all discrimination is conceptual. The second is that acquisition of conceptual k

edge alters how experiences seem in what is for Dretske the only relevant sense o

the doxastic. Each of these is problematic as a universal judgment.

Imagine again our concert-goer who does not know what a change of key is. He

the same symphony three times, but before the third time, someone explains to him

change of key is and what to listen for. After the second time, he remarks on how m

certain passage sounded like the same passage in the first production. His memor

how the first symphony sounded is like the experience of the second. Then he learn

a change of key is and goes back to hear the symphony again. That same passag

includes a change of key, and this he is able to recognize. He is also able to recogn

what he heard the first two times was a change of key, because he recognizes the p

enal similarity of the three acoustic events.
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Dretske must argue that this underlying phenomenal similarity that he seems to recog-

nize is due to application of some manner of concept (not change of key) to all three. Per-

haps, but perhaps not. Even if we concede this is true for the concert-goer, as a universal

principle it seems specious. Must all “judgments” of similarity be conceptual? This 

argue that categorization is the same as conceptualization, a dubious proposition

results in cognitive psychology on preconceptual categorization. Or it is to expan

notion of conceptualization to include any form of categorization. This is to deny tha

egorization can be a perceptual experience. These are empirical questions, to be so

by psychology. Whether perceptual categorization is a direct experience is a ma

research. At the very least, hardwired discriminatory behavior is provably possible—r

that chase after orange balls display it.

The second claim, that acquisition of conceptual knowledge alters our experienc

lows from Dretske’s claim that conceptual knowledge is required for an awareness of

rience. If we change how we are aware of sensation, we change how that sensation

to us. Again, this is an empirical proposition, and likely to be false as a universal judg

Certainly it is true that acquiring musical concepts changes, in one sense, how we

piece of music. We have a greater appreciation of the music, understand how it fits tog

perhaps hear what we considered disjointed pieces to be clever combinations. But

not lose the ability to identify memories of music acquired prior to this acquisition 

what we hear now. What we hear now may seem richer, but there is a phenomenal c

we can identify regardless of these concepts. And if the first claim is false, then there 

sibly an identical core that we can identify sans concepts. This, however, is someth
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cognitive psychology to uncover by measuring and comparing reported, instinctive, and

acquired responses, as well as by looking at neural responses.

5.2.2.4 Defending Externalism against Epiphenomenalism

The charge of epiphenomenalism is the charge that externalism implies that the mental is

irrelevant causally for the production of behavior. If causality of behavior is a local activity

of intrinsic properties, properties residing in the mind/brain, then historical differences and

environmental conditions must be irrelevant to explaining behavior because they are extrin-

sic factors. If mental states do not supervene on brain states, instead being in part deter-

mined by evolutionary history and environmental conditions, as externalism contends, then

mental states are causally irrelevant for the production of behavior. Hence, they are epiphe-

nomena.

To counter this charge, Dretske argues that historical causes can and are understood as

proximate causes of behavior. When we explain the reason for a brain-damaged individ-

ual’s behavior, we often cite the reason for his brain damage, such as a brick having

on his head. More importantly, the selected functions of aspects of evolved organism

generally cited as reasons for their behavior. Dretske illustrates this with a variatio

Swampman. There is a plant, the Scarlet Gilia, that changes color during the sum

order to attract pollinators. Imagine a duplicate of the Scarlet Gilia, Twin Plant, with

same behavior, but having evolved this behavior for different reasons (to repel p

Imagine a third plant, Swamp Plant, that spontaneously generated. There are no evo

ary reasons for its behavior. The behavior of each plant is explained differently. The S

Gilia and Twin Plant are given their respective evolutionary explanations, whereas S

Plant must be explained in purely mechanistic terms. 
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If historical considerations can play a part in causal explanation, then that mental states

do not supervene on brain states does not imply that they are causally inefficacious.

Granted. But this is not the danger that Swampman poses to the externalist. Dretske is right

when he asserts that there is no metaphysical problem with having historical conditions

figure into the causes of a behavior. There is a problem, however, when we require histor-

ical conditions to figure into the cause of behavior.

For example, although Swamp Plant has no evolutionary history, it does have an orga-

nizing principle. The photosynthesis that it carries out has the function (high-level mecha-

nistic) of sustaining the organism. Without it, Swamp Plant would die. That it succeeds in

photosynthesizing sugars and other important chemicals has consequences. Among these

are that it continues to absorb moisture, build cell structure, and produce pollen. Similarly,

Swampman can digest, walk, see, and hear. His ingestion of nutrients is caused by the same

processes that cause ours, hunger. An externalist might contend that digestion is only diges-

tion in the presence of a purpose, in the evolutionary sense of ‘purpose’. This is, how

to deny a middle ground between defining function in terms of input-output and evolu

ary purpose. This middle ground is the system, or organismic, level, an idea that 

explicate in the following two chapters. Natural selection is just one way to explain the

tion between organism function and environment. There is, however, no metaph

reason why it should be the only way. If it is possible that Swampman can have the

experiences as you or I, then Phenomenal Externalism is wrong about experiences.

The wild improbability of Swampman might tempt some to think that this case ca

ignored. This temptation can be easily overcome. With the development of powerful

puters and robotic instruments, it is not implausible to conceive of situation in which 
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puters manufacture themselves by the billions. With the increasing knowledge in the field

of neuroscience, it is plausible that brains could be broken down into their constituents at

the neuronal level. Using our robotic assemblers, construct billions of robotic lab assistants

whose job is to randomly put together the constituents of a brain. Each robotic lab assistant

gets a subset of the possible combinations to construct, so the task is parallelized across bil-

lions of systems. The number of neurons in the human brain is on the order of 1010, give or

take an order of magnitude. The number of possible configurations of these neurons is stag-

gering, but given the rules of chemistry, the number is reduced somewhat (the number of

connections in the human brain is 1014). Computers that can compute in the Teraflop range

(one trillion, or 109, floating point operations per second) already exist, and robotic arms

can operate with frightening speed. Going through all of the permutations of neuronal con-

figurations would take a substantial amount of time; it may even be prohibitively so. If it

is, we will set our 1 billion robots to constructing a new generation of robots to do the work

(say each robot makes 10,000 more over its life, now we have 10 trillion robots). The prob-

ability of assembling a working brain now becomes much greater than Swampman’s

taneous generation. If the robots hit upon a working brain, this brain will not have 

selected for, because the assembly process was an exhaustive one. It will not have

lutionary history. If placed in a human body with all the appropriate connections setu

what basis would we say that it does not experience? If we prick its body, does it not w

Dretske argues that psychology should not be reduced to the study of behavior a

physical motion, and allows that the physical motion of Swampman is equivalent 

duplicate. So why is mental behavior different? Swampman runs, eats, and defecat
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why doesn’t he experience? Rather than treating experiencing as behavior, Dretske 

as an organ with a teleological function.

Dretske hasn’t given one good reason to overcome the intuition that Swam

doesn’t have any experiences. He has given several bad ones. This is in the nature

lutionary externalism.

5.2.3 Why Evolutionary Externalism Doesn’t Work

Recently, robotics researchers at Case Western University developed a system to construct

simple robots with configurations selected for by application of genetic algorithms. The

more successful of these robots were capable of locomotion. If another set of researchers

had randomly pieced together similar robots, which, given the simplicity of these robots, is

plausible, would anyone argue that these robots are not capable of locomotion as they move

themselves across a floor?

Evolutionary externalism seeks to carve out a special exception for representations.

Only information gathering devices that have been selected for this purpose are truly infor-

mation gatherers. An evolutionary past is a necessary condition for representing, though

not for running, eating, or even digesting. Evolutionary externalists would even disqualify

those functions that had appeared through a process other than natural selection. Dretske

even holds that items chosen by artificial selection don’t pass muster:

Natural selection is quite different. Unlike artificial selection, an item cannot be n
rally selected to do X unless it actually does X. It has to do X because the way 
selected is by having its performance of X contribute in some way to the surviva
reproductive success of animals in which it occurs. It is this contribution to reprodu
success that, when it is selected for, confers a function on a system, and the fun
confers is doing what the system did (in this case, provided information) the increas
fitness. (Dretske 1995, 165)
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A mechanistic function must contribute to the fitness of an organism on average to be a tele-

ological function. But functioning on average does not tell us what something does. Sup-

pose an antelope sees a lion. Its visual system has the function of warning the antelope that

lions are near. Unfortunately, the lion is too quick in this particular instance, and the ante-

lope is killed in spite of the proper functioning of its visual system. On average, its visual

system gives it an advantage, but not today. This is how natural selection works; its notion

of average is statistical, not Normal. There are no Normal conditions under which an ante-

lope’s visual system works, no conditions in which it always enables the antelope to e

Nature does not care if there is a subset of conditions under which a function always 

All that needs to happen for selection to occur is a slight advantage being conferred

We can illustrate this point as follows. Suppose a mutation occurs and an anim

otherwise could not detect lions now suddenly can 30% of the time. This is not be

30% of the situations it finds itself in are Normal conditions, but that its sensor goe

30% of the time in the presence of lions. It is not very reliable, but 30% of the time i

help the animal escape. This animal now has an advantage over his compatriots, a

advantage will likely be selected for. But this sensor has no Normal conditions under 

it works reliably. 

Selection works over populations of animals, and therefore over the host of cond

that they encounter, and over time, and so the host of conditions that the gene

encounter. These conditions do not even constitute the set of conditions under wh

item will work, or the set under which it will not work. They are the conditions over wh

an advantage was gleaned. Presumably, there is a causal connection between the 

developed and the nature of the conditions. But it is not a perfect relation. Thus, we 
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say that under such and such Normal conditions, X has the function of providing natural

information. Rather, we must say that over the set of conditions that an organism faced, X

provided enough indication about the state of affairs that it gave an advantage. The connec-

tion between reliability of function or information and natural selection is much weaker

than Dretske purports, though existent.

This becomes clear when one considers the other aspects of functioning that are rele-

vant to providing an advantage. It makes no sense to have an organ that reliably provides

information if it functions too slowly or if it is cumbersome to bear. Natural selection

includes pressures other than fidelity of representation. Millikan sidesteps this by identify-

ing the informational mapping with an isomorphism between representation and world,

rather than the causal correlation used by Dretske. As van Gelder’s example of th

governor illustrates, however, there may not be an isomorphism between system st

world, but rather a statistical correlation. Variations in the world may not always m

variations in representation, and specifying ‘under Normal conditions’ does not ch

this.

Ultimately, the failing of evolutionary externalism is that it looks at the wrong leve

understand function. Natural selection answers the question of why an organism h

characteristics it does, not what these characteristics do. To answer this question, w

turn to the relation between organism and environment. Evolutionary history is not i

vant to this, but is also not essential. It explains how an organism’s species has come

its relation to the environment for naturally selected organisms, not what that relationship

is. Representation is, ultimately, a relation between organism and environment. As

we need not refer to evolutionary history to understand it. Unlike Millikan, we shoul
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interested in figuring out what representations are rather than supplying a scheme for clas-

sifying them. 

5.3 The Organism in its Environment: Gibson’s 
Ecological Approach

In The Ecological Approach to Visual Perception (1979), J. J. Gibson argued against the

physics-based approach to understanding visual perception and in favor of what he termed

the ‘ecological approach’. He offered an alternative theory to the standard understa

of information as composed of atomic elements gathered into meaningful structures

brain, instead contending that light striking the eye already contains direct inform

about complex objects in the environment, as well as information about their value 

perceiver.

When pursuing a physics-based approach, one attempts to analyze visual perce

terms of the effects that photons have when they strike the retina. It is a botto

approach, building visual perception from the smallest of building blocks: the respon

single cells to photons striking them. Edges, surfaces, and depth are all perceived, a

ing to the physics-based approach, by composing the information provided by these

of visual perception. Value is attached to the perceived object by the perceiver; it is n

ceived.

In following the ecological approach, one considers surfaces to be directly perce

not constructed in the perceptual system out of bits of information. According to Gib

light reaching the eye carries information about surfaces themselves. Not only are su

directly perceived, but what these surfaces afford are directly perceived as well. An 
227



ishes,

l nor

ithout

r even

) have

l pro-

tood in

 per-

ntities.

uch as

nalism.

tanding

ed by

age,

 affect

 prob-

 retinal

 (hence,

enta-
dance is what an aspect of the environment “offers the animal, what it provides or furn

either for good or ill” (Gibson 1979, 127). The ambient light is neither merely a signa

a symbol to be interpreted. It bears semantic information that is directly perceived w

the mediation of inferences or deductions within a symbol system.

Critics of Gibson have argued that he denies a place for information processing, o

for cognition, in the processes of visual perception. His defenders (Reed for one 1988

contended that Gibson’s theory shows how the environment augments the interna

cesses of the mind/brain, so that information processing can no longer be unders

terms of just internal factors. The environment provides structured information to the

ceiver, reducing the amount of processing necessary for perception of complex e

While there are aspects of Gibson’s theory that suggest the more radical reading, s

his theory of affordances, the more moderate reading has much to suggest for exter

I will examine each aspect separately.

5.3.1 How the Environment Augments Visual Perception

As Gibson and his defenders understand it, the physics-based approach to unders

visual perception posits a retinal image produced by incident light being transduc

receptors as the only source of information for visual perception. From this retinal im

the visual cortex and other portions of the brain must perform massive calculations to

perception of 3D objects. One such calculation is the solution of the correspondence

lem for stereopsis. Each eye produces a retinal image; to compute depth from these

images, the portions of the images that correspond to each other must be determined

correspondence problem). This is computationally expensive, as computer implem
228
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tions of this process have shown. Once correspondence is determined, disparity between

points in the images can be calculated, and disparity can be translated into depth.

The ecological approach suggests that much of what the physics-based approach

requires of the visual cortex is not necessary. The ambient light carries structured informa-

tion about how the environment is configured, and the mind/brain often only needs to

receive this information. Ambient light is light that converges on a point, as opposed to

radiant light, which is light dispersed from a point. Every point in the environment is a point

of convergence for light. The ambient light arriving at a point is structured in that, because

it is light reflected from objects, it has solid angles of similar intensity and similar mixtures

of wavelength, separated by intensity and wavelength distribution step changes. A solid

angle is the somewhat homogeneous light with a particular mixture of wavelengths incom-

ing from an object. This set of solid angles corresponding to objects and the space between

them forms the optic array. Greatly homogeneous regions indicate spaces between objects.

It is possible that ambient light has no structure, although this limiting case would be quite

rare. Gibson suggests a dense fog could create such a situation.

Differentiation within a solid angle indicates further information about the object. For

example, patterns of wavelengths offer information about the texture of the object. The

structure of the optic array itself indicates the configuration of objects in the environment.

Therefore, it is not necessary for the brain to engage in complex computations to create this

information from the retinal image. The ambient light already contains these relationships.

Much of the brain’s work is offloaded, as Clark would put it.

Perception, however, is not a passive process. Motion is essential to visual perc

according to Gibson. What motion allows for is change of perspective, and change o
229
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spective enables comparisons between optic arrays. Invariants within a set of optic arrays

can be extracted, and these give vital information to the organism about the objects in its

environment. Although Gibson is primarily concerned with visual perception, other sen-

sory modalities come into play when an organism moves about its environment. For exam-

ple, the semicircular canals in the ear offer information about the orientation of the head,

which can be integrated with information from vision to get a better sketch of what is

invariant in one’s experience. The organism does not take uncorrelated snapshots

processes independently. Rather it samples its environment, integrating informatio

the environment offers.

The information that the ambient light carries is “information” by virtue of the lawl

correspondences between the structure of the ambient light and the structure of the e

ment. Because of this unique mapping of particular optic array structure and environm

configuration, the organism is aware directly of how the environment is constituted.

What does this imply about a theory of semantic information? As Rowlands (1

points out, information can no longer be understood in terms of Shannon informatio

ory, or in terms exclusively intrinsic to the organism. To understand the information

the organism has, we must understand the information available in the optic array.

the optic array is about is contained within the optic array’s structure.

There must exist a unique correspondence between the structure of the optic arr

the structure of the environment for the perception of this information to be direct. O

wise, the organism would have to deduce from other cues and internal processing w

array corresponds to in this particular situation. Just what the right formula is for how 

the environment offers and how much is deduced from the information is up to emp
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science. That the optic array carries any of this information, however, is sufficient to rule

out methodologically solipsistic theories of mind. 

This theory is similar to Dretske’s notion of natural information in two respects: the

relation between environment and that which carries the information must be reliabl

this correlation is causal. The difference lies in the relatio of the correlation. For Dre

tokens in the mind/brain are correlated causally with aspects of the environment. Fo

son, the optic array is correlated causally with the environment’s structure. Dretske’s 

nalism, however, does not offload information processing as Gibson’s does.

5.3.1.1 How the Environment Augments Cognition

The theory of information that flows from Gibson’s ecological theory of perception ca

easily applied to aspects of cognition in general. The idea is that external objects ass

nitive processes as place markers, shortcuts, cues, and promptings. Rowlands (19

sents two possible extensions of Gibson’s theory: memory and mental calculation.

Sights, sounds, and smells all help trigger memories. A Gibsonian views this fact 

environment being an adjunct store for memory. In some cases, it is intentional, s

when someone marks a spot to return to. In other cases, the environment offers 

memory without active intervention of the organism. A particular spacing and type of

might indicate where one has stored a nut.

Similarly, we can use external items to help us calculate. When we engage in ca

tions that exhaust our mental resources, we use symbols marked on paper to help 

place. The action of writing and manipulating these symbols is itself information pro
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ing. Thus, Rowlands contends that our acts of memory and calculation are hybrids of inter-

nal and external information processing.

The principles expounded by Gibson in his theory of the perception of surfaces and

objects and as extended by others to cognition contain a reasonable balance of the external

and internal. Gibson’s theory of affordances, however, robs the mind/brain of functio

that is not reasonably ascribed to the environment.

5.3.2 The Radical Gibson: The Theory of Affordances

A number of authors, including Clark (1997), van Gelder (1995), Kelso (1997), and 

man (1992), have suggested links between their repudiations or qualifications of com

tionalism and Gibson’s ecological approach. In each case, the connection has been 

at best, supported only by the fact that Gibson and these authors reject locating me

exclusively in the head. Gibson, however, went much farther than this:

The theory of affordances is a radical departure from existing theories of value
meaning. It begins with a new definition of what value and meaning are. The perce
of an affordance is not a process of perceiving a value-free physical object to 
meaning is somehow added in a way that no one has been able to agree upon
process of perceiving a value-rich ecological object. Any substance, any surfac
layout has some affordance for benefit or injury to someone. Physics may be valu
but ecology is not. (Gibson 1979, 140) 

Both Edelman and Gibson rely on a notion of intrinsic value to establish their theor

meaning, but they locate value in opposite places. Gibson considered the environm

be value-laden, whereas Edelman (1987, 1989) identifies value in the structures of th

(although this value is established through processes that interact with the environ

evolution and development). At best, Edelman’s theory may be seen as an explana

how what seems to be direct perception actually occurs. This point will be develope
232



eyond

an be

eived.

, even

Thus,

ecause

Gib-

ant. So

there

ibson

rob-

ain is

 this

 to the

arries
ther in the next chapter. Clark attempts to enhance computationalism by using short cuts

and constraints offered by the environment in order to fill out the meanings found in the

head, but still considers these meanings as value-additions to the incoming signals from the

environment.

Just how radical Gibson’s theory is can be seen in his extension of affordances b

what surfaces provide to the animal. It is a radical step from claiming that surfaces c

directly perceived to claiming that the use of these surfaces can also be directly perc

All the more radical is the further step that all affordances can be directly perceived

those which do not seem to have immediate connection with visual perception. 

Gibson argued that how a thing tastes can be directly perceived. This is possible b

“a unique combination of invariants, a compound invariant, is just another invariant” (

son 1979, 141), and the taste of a thing is presumably just such a compound invari

“if the visual system is capable of extracting invariants from a changing optic array, 

is no reason why it should not extract invariants that seem to us highly complex” (G

1979, 141).

Gibson’s theory identifies the semanticity of a signal within the signal itself. The p

lem of how semantic information arises from the syntactic operations of the mind/br

traded in for the twin problems of how semantic information exists in a signal and how

information is perceived.

5.4 Problems with Direct Realism

Gibson’s theory of affordances locates the value and meaning of signals externally

perceiving agent. A given signal, an array of light in the case of visual perception, c
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information about what its source affords to the perceiver. But this information is different

for different perceivers, because what an object affords is not the same for every possible

perceiver. A piece of cheese affords nourishment for a human, but not for an adult tiger.

How does this differentiation in semantic information occur? Gibson states that an affor-

dance points in two directions, to the environment and to the individual. Perception is not

merely perception of the external world, but is at the same time perception of one’s 

well. A human perceiving a piece of cheese is also perceiving his relation to the chee

own tastes and need for nourishment.

While this blunts the obvious criticism of Gibson's theory of affordances, namely

meaning cannot be external to the individual because the meanings of signals are a

ous, it also blunts the supposed radicalism of his thesis. Meaning cannot be exclu

external to an individual, because an internal sense is required to establish what an

affords. Therefore, information in ambient light does not specify what an object afford

what sense, then, is the perception of affordances direct?

Gibson’s theory founders when called upon to explain how learning occurs. As G

acknowledged, animals are not born capable of perceiving all of the affordances pro

by the environment. They begin by perceiving only the affordances for themselves

learning to perceive the affordances for others. How does this process of learning

dances not directly related to their own internal and external perceptions come a

Gibson provides few clues. He has described how they might come to perceive the

surfaces, but not the same tastes afforded by different foods. Does a child project h

internal perception on to another child, and thereby understand that the taste afforde

other child is the same as his? If so, such a process is in no sense direct. If Gibson's
234
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is to hold generally, then we must suppose that the ambient light carries the information that

one child has the same affordances as another child, and that children directly perceive this.

But the ambient light does not carry information about a child’s internal sense, and so

cannot specify entirely the affordance an object provides to that child. Learning would thus

seem to require a process other than direct perception, which would mean some affordances

are not directly perceived.

The more radical version of Gibson’s theory also cannot adequately explain how mis-

perceptions occur. In explaining the nature of misperception, Gibson imagined a scenario

in which a sheet of plate glass is extended over the edge of a cliff. Although the cliff no

longer affords falling, humans misperceive it as dangerous nonetheless. Gibson contended

that the ambient light carries information about the cliff itself, but not about the glass that

would prevent someone from falling off the cliff. Here Gibson is mistaken. The ambient

light does carry information about the glass, if it ‘carries’ information at all. Such infor

tion is not merely haptic as Gibson asserted unless the glass is perfectly translucent 

glass is). The human perceptual system cannot detect this visual information, howev

this is what causes the misperception. But a more sensitive perceptual system would

to detect the presence of the sheet of glass. Furthermore, humans can be taught to re

the presence of what seems imperceptible, such as the glass, by honing in on othe

cues. If a person learns to perceive the presence of the glass, does the ambient lig

denly carry information about its affordance?

Gibson’s examples address only the case where a human does not see somethin

actually present. A second case of misperception, illusory images, presents greater d

ties for Gibson’s theory, a fact Gibson recognized (Gibson 1979, 243-244). If a perso
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the illusory perception of a surface, is the misinformation due to the ambient light, or to the

person’s perceptual capacities. If we accept the radical reading of Gibson’s theor

meanings are external to the perceiver, then either the ambient light can provide false

ings, or the error is in the perceiver. The former explanation is untenable: In what way

light in itself be thought to have a false meaning? The latter explanation contradic

reading of Gibson’s theory, for some mechanism other than mere direct perception

account for the introduction of error. Therefore, the meaning of the perception is no l

external to the perceiver, but rather dependent upon him.

5.5 How Ecological Externalism Succeeds Where 
Evolutionary Externalism Fails

5.5.1 Defeating Chauvinism

As we have seen in the critiques of Millikan and Dretske, natural selection does not

special status to its products such that a naturally selected mapping qualifies as a re

tation and an artificially produced one does not. Evolutionary externalism, there

excludes not only such metaphysical possibilities as Swampman from the class of rep

tational systems, but also historical actualities, such as organisms that have yet to ha

nascent sensory systems selected for. This strongly indicates that representation is

thing other than what evolutionary externalists claim, that there is a core to it tha

across systems regardless of their history.

Even if the evolutionary history of a function enables us to discover what it is d

this fact serves only as a means of discovery of the core function. It is not a necessar

ponent, but rather an indicator of what we should look for in the organisms behavior
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How does ecological externalism fair with Swampman? Let’s provisionally ass

that Gibson is correct about the nature of optic array, at least as it concerns its relat

surfaces and objects (and not what it affords the organism in terms of value). The in

mechanisms of Swampman remain the same as Davidson. Place Swampman in th

environment as Davidson, and he will be confronted by the same sorts of optic a

Nothing about Swampman changes the structure of the optic arrays nor the enviro

that produces them, and so the information contained in them remains the same. S

man can move around and sample optic arrays and extract the same invariants as Da

because Swampman has the same physical equipment as his double. Therefore, th

fication of what information Swampman has, its external and internal componen

exactly the same.

If we are Representationalists1 in the mold of Dretske, then we must conclude th

Swampman has the same thoughts as Davidson. But accepting Dretske’s story ab

relation between experience and representation, we must also conclude that Swa

has the same experiences as Davidson. In each case, we remain externalists bec

information that determines representation does not supervene on brain states.

This argument holds for our mutated-but-not-yet-selected-for organisms. They

internal characteristics that crudely process information, and their environment pro

structured information that these internal functions can extract invariants from. So it s

that ecological externalism avoids the charge of chauvinism as it has been formulate

What about liberalism?

1.  It should be noted that Gibson rejects the notion of a representation as being something re-presented 
(Gibson 1979). There is no assumption made here as to whether Gibson is right or not. For the purposes of 
this section, ‘representation’ is shorthand for complex informational structure used by an organism.
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5.5.2 Dodging Liberalism

If we were to require that for something to count as a representation for an entity there

merely needs to be some informational structure transduced by the entity, we would again

be faced by the prospect of panpsychism. Rocks are continuously bombarded by ambient

light, and some of this light gets transformed into heat energy, yet rocks do not have repre-

sentations. It would seem quite easy to sidestep this prospect.

Presumably, all we would need to do is require that the external information get “u

in some manner by the internal processes of the entity. This vague notion allows for 

range of interpretation. We could wed ecological and evolutionary externalism, and re

that the external information be used for the selected purposes of the organism, b

would simply lead us back to the chauvinistic position repudiated above. We could s

that the external information must be transformed into differently structured informa

i.e., manipulated. Whether this avoids liberalism depends on what one means by ‘inf

tion’ in this context. If it denotes Shannon information, then one might again argue

rocks are representational systems.

One possible manner of specifying what it means for information to be used is 

enables behaviors that help to sustain the organism. This does not require an evolu

context: a robot could produce behaviors that help keep it going. This would se

exclude mental events like daydreams from being informational. Only if we insist, 

ever, on using exclusively external terms to specify representations. A class of in

states can be specified according to similarity of intrinsic factors. Those that “use” ex

information are a proper subset of this class. Those that don’t are another proper sub

needn’t religiously adhere to the notion that all representations are external. Or we
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apply Millikan’s notion of a derived proper function to daydreams and the like, but ins

of the original function being evolutionary in nature, it is systemic.

Thus, whether one avoids liberalism depends on one’s notion of what informati

Deciding on a particular definition of information has implications for what sort of me

anisms can be present. My criticisms of computationalism’s inability to solve the sy

grounding and frame problems implies that computationalism really does not fit with e

nalism. The next chapter seeks to describe the mechanisms through which an ecolo

externalist form of representation could come about. This is not to imply that Gib

arguments establish that ecological externalism is true. There are still many holes

filled.

5.5.3 What Hath Gibson Wrought? Information and Misrepresentation

Ultimately, Gibson’s theory is an empirical one. It is generally used by externalists to 

onstrate how an externalist theory might play out in actuality. While its failure does no

imply that ecological externalism is false, it is worthwhile to ask how far Gibson has 

in establishing his theory.

Though not conclusive by any stretch of the imagination, it ought to be pointed ou

the majority of vision researchers reject Gibson’s ecological theory of perception. Ullm

critique is generally seen as decisive; research in computer vision proceeds on the s

model, as does most research in the psychology of perception. Few if any attempt to

stereo vision in the way described by Rowlands, as sequential sampling by individua

rather than as a synthetic process. A Gibsonian might argue that this is why computer

is so hard—everyone is doing it wrong. Well then, let the Gibsonians show how it is 
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For some reason, not many are taking up this challenge. Again, this is not meant to be con-

clusive about the prospects of an ecological theory. In fact, as will be laid out in the next

chapter, certain aspects of Gibson’s theory have been taken up by dynamic system

rists, although it does not yet appear that they will vindicate Gibson’s specific claims 

visual perception and the optic array, if they try to at all.

What is lacking from Gibson’s theory that could yield more than just a theory of

ception is a more developed account of what information is. What Gibson offers is fr

with difficulties. The primary of these has already been discussed but bears repeati

relation between information and misrepresentation.

Information for Gibson consists of a relation between structure of the optic arra

external informational structure in general) and environmental structure. It is a unique

ping, though not necessarily one-to-one for all of the elements of structure in arra

environment. The question then arises as to what misrepresentation is.

There are three possibilities for what could cause misrepresentation. First, there

be two identical optic arrays, each corresponding to different environmental features

is ruled out by the specification of uniqueness. Second, there could be a malfunction

internal processing that is independent of the external information. Third, there could

problem of relating internal characteristics to external information. The more direc

reads Gibson’s conception of perception to be, the less plausible these last two poss

become. The possibility of misrepresentation vanishes.

The uniqueness of mapping is what must give, because it is false. It is theoreticall

sible to reconstruct ambient light without the usual environmental features that prod
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It is even practically possible for controlled, simple conditions. The structure of ambient

light does not uniquely point to anything.

It would seem that we have to invoke Normal conditions to save ecological externalism.

But that would only bring along the baggage of evolutionary externalism. Dynamic systems

theory offers another way. But one last glimpse at philosophical externalism before we turn

to its possible rescuer.

5.6 Tye’s Externalism: Why Tye’s Representationalism 
Has No Foundation

In The 10 Problems of Consciousness (1995), Michael Tye expounded a Representational

account of experience similar to that of Dretske’s. Like Dretske’s, it was founded o

externalist theory of representation, and attempted to show how the representationa

acter of experiences helps explain away the more difficult problems of naturalistic the

of consciousness. Tye went further than Dretske, however, in claiming that even such

as anxiety and depression are representational. Whether Tye’s Representationali

solve the problems of consciousness depends in great part on whether he can form

plausible theory of representation. It is this aspect of Tye’s theory that is examined

whether Representationalism, once granted, can solve the problems of consciousnes

cussed in Chapter 7.

Tye explicitly endorses the causal covariance model of representation:

There are many different theories about the nature of representation, but one ap
that seems well suited to sensory representations (although not to beliefs) is the
covariation view. On this view, if optimal or ideal perceptual conditions obtain, sen
states of the sort found in perception track the presence of certain external; they t
represent those features. (Tye 1995, 105)
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There are some important qualifications in this statement. First, the causal covariance

model is only intended for sensory representations. Second, there is the notion of optimal

conditions obtaining. Third, there is the notion of “tracking” that needs to be expla

Tracking is just causal covariance of a state S in an object x with a state of world/ob

to put it more formally: “S represents that P = df if optimal conditions obtain, S is tok

in x if and only if P and because P” (Ibid, 101). So tracking only occurs under optimal

ditions, conditions in which there are no abnormalities, malfunctions, or intervening

cumstances. A misrepresentation occurs when these conditions do not obtain.

At first glance, the definition of optimal conditions seems circular. Optimal conditi

are conditions under which a representation could occur, but a what a representa

depends on what optimal conditions are. So a representation happens under con

under which a representation could occur. But optimal conditions are to be underst

those conditions under which “S would be tokened in x if and only if P were the case; 

over, in these circumstances, S would be tokened in x because P is the case” (Ibid, 

Optimal conditions are not necessarily equivalent to Normal conditions. Normal

ditions are those conditions for which an attribute was selected for, not, as Millikan tr

argue, those conditions under which an attribute always fulfilled its function and henc

selected for. Optimal conditions need not refer to evolutionary history. They could si

be a subset of the conditions under which a state is perfectly correlated with what it 

sents in the world, a correlation due to causation. It is natural information without the

lutionary component.

Optimal conditions, if not the conditions for which an attribute was selected for, 

be defined on a case by case basis. There is a great deal of variation between orga
242



lates—

to Tye.
the same species. The conditions under which my visual perception fails differ from the

conditions under which yours fails. This variation is not covered by the specification of no

abnormalities or malfunctions. There is no canonical human visual system against which to

determine an abnormality. Bodily function is generally within a range, and abnormality is

also generally a gross deviation. The only alternative to specifying optimal conditions in

terms of selected function is to specify it in terms of average ability; unfortunately, average

conditions do not get you the if-and-only-if relation between a tokening and the state of the

world.

Tye seems in places to have tentatively thrown his lot in with the evolutionary reading

of optimal conditions:

It is still possible that two different organisms that evolved in different ways, while
nonetheless sharing the same internal microphysical states (at some given time t), differ
in their phenomenal state at t. (Tye 1995, 153)

But Tye does not consider sameness of evolutionary history to be a necessary condition for

sameness of representation. Thus, he rejects the notion that Swampman does not experi-

ence anything. He does, however, accept the notion that microphysical duplicates could

have duplicate sensory states causally correlated with different environmental features by

virtue of different evolutionary histories and natural habitats, and thus they would have dif-

ferent experiences. What does this all imply?

Optimal conditions need not be specified in terms of evolutionary history (e.g., Swamp-

man), but can be (e.g., for you and I, or duplicates of us). Tye has us imagine a duplicate of

himself produced by the Transporter device on the series Star Trek. This duplicate is then

sent to an unexplored planet. The experiences he has represent their earthly corre

what they would represent on earth—because of the duplicate’s causal connection 
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What would Swampman’s experiences represent if placed on this planet? The re

causal relationship no longer exists, because the similarity between Swampman and

accidental and independently caused. Swampman represents the external states hi

states track. Presumably then, Swampman’s mental states on the unexplored plane

represent aspects of that planet, because there are no evolutionarily selected for ear

relates.

So, if you have an evolutionary history, it matters to what you are experiencing; i

don’t, don’t sweat it, because you don’t need it. Can this really work? Suppose we tak

and his Swampman, crack open their skulls, and swap some neurons. We will spec

swap neurons operating within neuronal groups. If we find four neurons working tog

to produce edge representations, we will take two of them and swap them with the 

sponding pair in the double’s brain. We will do this for all neuronal groups. Now, when

and Swampman are placed on the unexplored planet, what are the causal correlates

representations? A mix of earth objects and unexplored planet objects? Half of the n

in neuronal groups in each of their heads were selected for their contribution in prod

a particular type of representation, the other half were not. The only reasonable conc

is that their causal correlates are the aspects of the environment that they currently

This is the common core between Swampman and his double.

Tye cannot have it both ways. Either he must fully embrace evolutionary externa

or reject it. Trying to split the difference only leads to absurdities. Since evolutionary e

nalism has been shown here to be untenable, the correct course is to drop that 

Having done so, an externalist like Tye must elucidate a theory of causal covarianc

allows for the stochastic relationships between human representation and the struc
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the environment, rather than insisting on perfect covariance conditions. To do so means

adopting an appropriate model of underlying mechanisms and how they relate to the envi-

ronment.

5.7 Whither Externalism?

Philosophical externalism was initially motivated by the intuition that the internal structure

of a representation does not determine its reference, and therefore content must have an

external component. Evolutionary externalists tried to establish a nomic relationship

between the evolutionary history of a representing device—emphasizing why it ha

structure and, hence, function that it has, rather than what its structure is—and the re

of the representation. They have not only failed to establish this relationship, miscons

aspects of Darwinism, but the consequences of their theories are to either implausibl

the ability of plausibly cognizant beings to represent their environment or to count n

everything as cognitive.

A plausible externalism begins with the understanding of the environment’s info

tional contribution to organisms’ representational capacities, as well as the need for in

mechanisms that can somehow “sync” themselves with the environment. For these i

mechanisms to achieve this, there must be both organizational capacities and org

tional principles. These are not determined by the evolutionary history of the orga

though this can be contributing factor as to why they exist. Instead, they are proper

the organism as a system, not as a historical artifact. One of these organizational ca

is the integration of information through active sampling, as Gibson pointed out in his

logical theory of visual perception. Another, as I will discuss, is the capacity for self-o
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nization of internal patterns around sensory signals. What these considerations highlight is

the need for an understanding of the mechanisms involved in producing representations in

order to understand what representations are.

The dynamic systems conception of mind offers the externalist these very mechanisms.

But it is not only the externalist who can benefit from dynamic systems concepts. They

offer the Representationalist a different understanding of the causal covariance relationship

upon which their theories rely. Although Tye has endorsed the view that what is happening

internally to the organism is computation, the mechanisms of dynamic systems provide a

better foundation for his theory of phenomenal content. These issues will be raised in the

final chapter when I sketch a theory of mind based on dynamic systems principles.
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Chapter 6 Towards a Solution: Dynamic 
Systems and Information

We have seen a number of efforts toward understanding the nature of semantic information.

Dretske identifies semantic relations with causal connections between representations and

what is represented. Sayre equates semanticity with veridicality as defined by the mutual

information between signal channels. The molecular Darwinists understand semanticity to

be the relation between physical structures. Millikan considers mechanisms contentful by

virtue of their having been designed for that function. Gibson and other proponents of direct

realism have argued that semanticity resides in the environment and the affordances it pro-

vides. I turn now to detailing an alternative account of semantic information, one inspired

by dynamic systems theory.

The dynamic systems understanding of semanticity is that the extremes of direct real-

ism and methodological solipsism both make the mistake of considering the individual and

his environment as separate entities (Kelso 1997). They must choose one of these antipodes

as the place wherein semanticity resides: either the person or the world. Approaches such

as Dretske’s and the ‘Robot Reply’ to the Chinese Room argument also implicitly a

this divide when they attempt to bridge it via causal connections between a person’s

sentations and the world around him.

Instead of separating the individual from the environment, these two poles shou

understood to be part of one dynamic system. Semanticity, the relation between rep
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tation and represented, is then embedded in the parameters of the equations describing this

system, or as Kelso writes in Dynamic Patterns (and as quoted earlier):

Like mind and matter, the concepts of information and dynamics have long been
held distinct and separate. Usually, they are taken to refer to fundamentally different
but alternative modes of describing complex systems . . . But look at what is done here.
Instead of treating dynamics as ordinary physics using standard biophysical quantities
such as mass, length, momentum, and energy, our coordination or pattern dynamics is
informational from the very start. The order parameter, ϕ, captures the coherent rela-
tions among different kinds of things . . .

Notice, coordination dynamics is not trapped (like ordinary physics) by its (purely
formal) syntax. Order parameters are semantic, relational quantities that are intrinsi-
cally meaningful to system functioning. What could be more meaningful to an organ-
ism than information that specifies the coordinative relations among its parts or
between itself and the environment? This view turns the mind-matter, information-
dynamics interaction on its head. Instead of treating dynamics as ordinary physics and
information as a symbolic code acting in the way that a program relates to a computer,
dynamics is cast in terms that are semantically meaningful. The upshot of this step,
which, I stress is empirically motivated, is that intentions do not lie outside self-orga-
nized coordination dynamics. (Kelso 1997, 143-144)

At first glance, it would seem that what Kelso is suggesting in this passage is primarily a

change in perspective, in how we view the mechanisms that give rise to intentions. What I

will argue is that this different perspective describes different mechanisms than those sup-

posed in computational theories of mind. Kelso also suggests that dynamic systems in gen-

eral are inherently semantic. This would be an error, similar to that of Chalmers when he

supposes all entities describable in terms of Shannon information have experiences. I will

describe the properties that dynamic systems must demonstrate to bear semanticity, cir-

cumscribing this feature to a small set of dynamic systems. Finally, I will propose mecha-

nisms underlying these properties and present a theory of mind that accords with these

mechanisms.
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6.1 The Nature of Dynamic Systems

A brief overview of one example of a dynamic system, the Watt governor, was given in

chapter 2. Van Gelder used this example to flush out the differences between computational

and dynamic systems. The impression this leaves is that computational systems cannot be

dynamic systems. Van Gelder encouraged this impression by emphasizing the importance

of continuous time operations in dynamic systems over the discrete nature of computational

systems. In so doing, van Gelder is carving out his own notion of what a dynamic system

is, as current dynamic systems theory includes such discrete systems as iterated maps under

its rubric (Strogatz 1994). Rather than champion dynamic systems in general over compu-

tational systems, I will point out the properties of specific types of dynamic systems that

recommend them over computational models of cognition. An overview of the relevant

properties of dynamic systems is presented here.

Van Gelder is right to emphasize continuous time dynamic systems, because brains

operate in continuous time. This is not the only, nor most important, aspect of time when

considering its relation to cognition, although this will emerge later in this chapter.

Researchers use differential equations to describe the evolution of continuous time

dynamic systems, and most of these equations are nonlinear in nature. Nonlinear systems

are not equivalent to the sum of their parts. This means that most equations describing

dynamic systems cannot be solved analytically. In fact, nonlinear differential equations

cannot be broken down into parts as their linear cousins can, making analysis difficult.

Among nonlinear dynamic systems found in nature are the class of biological oscillators,

such as neurons. Nonlinearity also holds importance beyond the fact that it is descriptive of

the behavior of neurons; it is not just low-level physiological phenomena that are nonlinear,
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but higher brain functions as well. Computational systems are capable of computing non-

linear functions—these are the basis of artificial neural networks—but nonlinearity in 

tion is largely missing from classical AI. 

Differential equations trace out a trajectory or path for the system in what is c

phase space. Phase space is the space of all possible states for the system over tim

jectory is the path a system takes through this space. The flow is the direction of the 

tory for a subset of time, or just a subset of the trajectory. Points at which there is no

are called fixed points, and these may be either stable or unstable. Stable fixed po

attractors, have the flow toward them, and unstable fixed points, or repellers, have th

away from them. More precisely, an attractor is defined as follows:

An attractor is a closed set A over states of the system with the following propert
1.) A is an invariant set: any trajectory x(t) that starts in A stays in A for all time.
2.) A attracts an open set of initial conditions: there is an open set U containing A
that if , then the distance from x(t) to A tends to zero as . This me
that A attracts all trajectories that start sufficiently close to it. The largest such
called the basin of attraction of A.
3.) A is minimal: there is no proper subset that satisfies conditions 1 and 2. (Str
1994, 324)

A strange attractor is an attractor that “exhibits sensitive dependence on initial conditio

by which is meant that nearby trajectories will separate exponentially fast (Strogatz 

325). Strange attractors are also known as chaotic attractors.

One way to visualize the dynamics of a system is to interpret the differential equ

governing it as a vector field. Using Strogatz’s (1994, 16-17) example, the nonlinea

ferential equation , we can think of x as the position of a particle moving a

the real line and  as its velocity. The vector field can be shown by plotting  versus 

placing arrows to indicate the velocity vector at x. Figure 6.1 shows the correspondin

x 0( ) U∈ t ∞→

x· xsin=

x· x·
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Figure 6-1. Plot of 

The arrows indicate the flow, which is to the right when >0 and to the left when <0.

When =0, there is no flow, and these are the fixed points. The solid circles represent the

stable fixed points or attractors, which have the flow directed toward them, and the open

circle represent the unstable fixed points or repellers, which have the flow directed away

from them. Attractors need not be fixed points or simple intervals; the limit cycle attractor

is an example of an attractor that is not a fixed point, and limit cycle attractors characterize

the activity of pendulums. In fact, dynamic systems can produce arbitrarily complex attrac-

tors, with strange attractors being the most extreme example.

Another way to visualize the dynamics of a system (Strogatz 1994, 30-32) is to use the

notion of potential energy, where the potential V(x) is defined by . The idea

is to imagine a particle sliding down the walls of a potential well. An example for the

system  is given in Figure 6.2.

x· xsin=

x· x·

x·

f x( )
xd

dV
–=

x· x x
3

–=
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Figure 6-2. Plot of potential V as computed from 

The solid circle is the imagined particle as it slides down the side of the potential well. Two

attractors are shown at  and one rippler at . This gives an example of a

tistable’ system, which is an important property of biological dynamics (Kelso 1997).

method of visualization is especially useful for illustrating the relative depth of attrac

which indicates how much energy is required to push them out of their stable state. S

is a graded concept, with varying degrees of stability (instability) characterizing diffe

attractors (repellers).

6.2 One Step Further: Self-Organizing Dynamic Systems

As one changes the parameters of dynamic systems, attractors and repellers can b

nated or changed into one another. These changes are called bifurcations, and the points in

parameter space at which the changes occur are called bifurcation points. Dynamic s

xd
dV

– x x
3

–=

x 1±= x 0=
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that do not change behavior for most values in parameter space are structurally stable. Such

systems show ordered behavior, which is to say that for large, connected regions in param-

eter space, these systems have fixed behaviors. The opposite extreme is chaotic behavior,

characterized by the existence of chaotic attractors, i.e., the system can change behavior

dramatically in only small steps in parameter space. In between the two extremes is com-

plex behavior, in which fixed behaviors are breaking up and chaotic behaviors become

fixed (Kauffman 1993).

Self-organizing dynamic systems are systems in which patterns spontaneously arise out

of the interactions of their subcomponents. The interactions are nonlinear, which means the

patterns are not merely the sum of their components and that the system is dissipative and

far from equilibrium. A dissipative system is one in which the energy in the system is not

uniformly distributed, instead being concentrated in flows that more easily dissipate the

energy. This results in a system in which most of its degrees of freedom are suppressed;

those that are not suppressed are known as order parameters. The order parameters are

found at phase transitions where new patterns arise. Fluctuations in the system allow it to

discover new patterns by breaking out of stable attractors, and are not just useless noise.

Control parameters are those parameters that lead the system through changes in patterns,

and are themselves not dependent on these patterns. Changing the direction of a control

parameter, such as temperature for certain chemical reactions, can result in hysteresis,

which is a condition in which an overlapping region of parameter space exists where the

system can be in one or more states depending on the direction of change in the control

parameter.
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To illustrate these ideas, it is useful to look at a classic example of a self-organizing sys-

tem: the laser (Haken 1996). A gas laser consists of a glass tube holding a gas of laser-active

atoms. These atoms are excited by means of an electrical charge and emit light waves with

random phases. The light waves are reflected by mirrors, trapping the light in the laser for

a period of time. As the atoms are increasingly excited and the concentration of light waves

grows, a process called stimulated emission occurs. Stimulated emission is when a light

wave hits an excited atom, forcing the atom to release energy, which the light wave then

picks up. The enhanced light wave may go on to hit another atom, and so on, causing a cas-

cade of enhancement. When the light waves oscillate, they force the electrons of the atoms

to oscillate in phase. But since there are many light waves in the laser with different phases,

they are competing against one another. Eventually, one of the light waves ‘wins’ a

of the light waves become ‘enslaved’ to its amplitude, which is the order parameter 

system. Rather than a mix of randomly phased light waves, the laser now produces co

light. This process will not happen with lower levels of excitation. The increasing elec

charge, which is the control parameter here, drives the system to instability. Onc

system reaches an unstable state, it starts to self-organize. The relation between th

parameter and the component light waves is that of circular causality:

The order parameters act as puppeteers that make the puppets dance. There is, h
an important difference between this naive picture of puppeteers and what is happ
in reality. As it turns out, by their collective action the individual parts, or pupp
themselves act on the order parameters, i.e., on the puppeteers. While on the on
the puppeteers (order parameters) determine the motion of the individual parts, th
vidual parts in turn determine the action of the order parameters. This phenome
called circular causality. (Haken 1996, 43)

The notion of circular causality is a bit troublesome, since order parameters are a

entities. But the behavior characterized by order parameters emerges from the inter
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of the individual components and this emergent global behavior keeps these components in

line. The slaving principle, which is the fact that order parameters govern the behavior of

the system, enables us to describe such complex systems in simple terms. But to know how

order parameters arise, we must understand the interactions of the individual components.

In the case of the laser, the control parameter, the electrical charge, was external to the

gas interactions and, therefore, not dependent on them as the order parameter is. This need

not be the case, and, in fact, is not in dynamic systems such as the mammalian brain. What

leads the brain through changes is often originated within the brain itself and dependent on

the dynamics of the brain.

6.3 Conscious vs. Nonconscious Self-organizing 
Dynamic Systems

Not all self-organizing dynamic systems are conscious, and so we need to be able to distin-

guish those aspects of self-organizing systems that are essential to conscious systems.

Skarda and Freeman argue that ‘global objectives’ possessed by biological organism

neural systems differentiate them from nonbiological systems and nonneural biolo

forms. The global objectives are motivations, characterized as

complex process[es] whereby the organism predictively controls and maintains its
the optimal condition given the circumstances in which it exists and acts. (Skard
Freeman 1987, 173)

These global objectives regulate neural dynamics, according to Skarda and Freeman

they “limit the possible range of patterned neural behaviors and they mediate inter

among various neural subsystems” (1987, 173). So the distinction to be drawn betwe

logical entities with brains and those without is that brains control bodies “for the self
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moting purposes of search, attack, ingestion, escape, and reproduction” (1987, 173)

are an obvious example of biological forms that do not bear these characteristics.

Having described conscious self-organizing systems at the level of Millikan's in

tional icons, Skarda and Freeman draw no further distinctions between conscious an

conscious biological entities, leaving their account open to the same objections that 

Millikan’s. The primary difference between Millikan’s intentional icons and the Skar

Freeman theory of consciousness, however, lies in the nature of self-organization. M

requires that there be a mechanism that has the function of producing an intentional 

order for something to count as an intentional icon. Although intentional icons ca

acquired (e.g., retinal images), they must be produced by organs selected for that ve

pose (e.g., the retina). A mechanism that arose through self-organization would not 

normal function, according to Millikan's theory. This additional degree of freedom

Skarda and Freeman’s theory is important—without it we would have to consider 

neural mechanisms to be contentless—but not sufficient to explain why brains hav

tent-laden, intentional states.

Nonetheless, the ability to self-organize is, I contend, a necessary condition for th

duction of such states. Self-organizing systems possess two essential properties of t

resentation-producing mechanisms: plasticity and nonlinearity. By plasticity, I mea

capacity to smoothly adjust representations, as well as the ability to spontaneously

new representations. By nonlinearity, I mean the ability to create representations tha

arbitrary domains, including representations of ad hoc categories. An organism or m

that does not have these two capabilities will not be able to successfully navigat

manipulate a dynamic environment. It is because they lack these characteristics that 
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robotic systems are unable to produce behaviors that humans find extremely simple to

achieve. In short, it is because they lack these characteristics that robots suffer from the

frame problem.

Skarda and Freeman have provided one piece of the puzzle, which is, to paraphrase

their formulation, the ability to self-generate control parameters that guide a system toward

maintaining itself. For organization to be maintained in a system, it must thwart the Second

Law of Thermodynamics—all closed systems increase in entropy—by introducing e

into itself. Actively maintaining oneself requires being able to control one’s actions w

changing environments. This in turn implies an ability to dynamically adapt to env

ments. What enables a system to do this?

Watt governors and humans both have the ability to dynamically adjust to conditio

their environment, although the environment of a Watt governor consists merely o

valve to which it is attached. Nonetheless, a Watt governor does not support cog

Although it is lacking the requirement outlined by Skarda and Freeman, this is not the

ciple reason to judge it as noncognitive. Missing from the Watt governor are any m

nisms that could be considered representational. The Watt governor does its job w

internal representations because it does not need to plan for the future, or make an

of abstraction about its environment. The Watt governor in itself is a poor metaphor f

human brain. Instead, the Watt governor represents how perceptual subsystems mig

tion. Although the Watt governor does not bear any internal representations, it is itse

resentational in that its states are statistically correlated with environmental conditio

perceptual subsystem, such as edge detection through vision, can be conceived a

Watt governor in that it does not have internal representations, but its behavior is rep
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tational in the same loose way as the Watt governor. There is a statistically correlated pat-

tern of activity in this perceptual subsystem centered around the presence of edges. I say

that the notion of representation here is a ‘loose’ one because this is not implying th

activity of the subsystem acts as a symbol for the larger perceptual system or the bra

whole. Rather, the perceptual subsystem for the brain is like the valve and steam 

Watt governor: a component that influences its dynamics. This component has it

dynamics centered around features of the environment, but its dynamics are influen

the higher level systems as it in turn influences them. This is not the ‘circular causal

Haken, but the feedback or reentry between neural systems as proposed by Damasio

and others (Edelman 1987; Pribram 1991).

As we saw earlier, Damasio argued that representations arise through the time-

multiregional retroactivation of perceptual sites. Pattern recognition and memory are

ities of pattern reformation. To recast this in a dynamical systems context, the brain

dynamic system composed of semi-modular dynamic subsystems corresponding to p

tual sites. The subsystems organize around input from the environment, and throug

nections to other subsystems, affect the dynamics of the brain as a whole. These 

feedback to the originating subsystems. The subsystems are semi-modular becau

have their own attractor states and do not necessarily affect the entire brain’s dyn

They are not truly modular in Fodor’s (1983) sense of being informationally encapsu

that is, sealed off from information from other systems. To answer Rapaport’s (1996)

tion as to what is stored if not symbolic representations, memory consists of the ada

of brain chemistry, through processes such as long term potentiation, so that the br

reproduce, through feedback to various subsystems, patterns of neuronal behavior
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sponding to the patterns that emerged during experience. This is not representation liter-

ally. The reformed patterns may be adjusted according to a variety of factors, such as the

work of processes that strip away aspects or bind with other patterns.

To summarize the dynamic systems interpretation of the phenomena described by

Damasio: Patterns emerge from the dynamics of perceptual subsystems; these in turn affect

the dynamics of the convergence zones, and continue to feed upward; the patterns are rec-

reated in the perceptual subsystems through feedback as directed by global control param-

eters. The patterns here are not symbols, but stable patterns of activity, attractors, in the

neuronal ensembles.

Dynamic systems theory has already been applied to explain the emergence of time-

locked neuronal oscillations (Schuster 1991). Schuster analyzed the behavior of neuronal

ensembles coupled via excitatory and inhibitory connections, and pointed to the emergence

of a Hopf bifurcation leading to the time-locking. In a Hopf bifurcation, a limit cycle attrac-

tor (the kind of attractor that characterizes a pendulum) emerges from a stable fixed point

attractor that loses stability. The Hopf bifurcation is an important phenomenon, because, as

Kelso points out:

The Hopf mechanism offers an intriguing way to spontaneously create and dissolve
dynamic patterns of behavior. It is potentially important because this . . . process
appears to be one way the nervous system achieves stability while flexibly adapting to
environmental requirements. (Kelso 1997, 87)

 Processes of neural self-organization enable organisms to adapt in real, not evolution-

ary, time scales to environmental conditions through reproduction of experience as guided

by internal control parameters in the form of innate and self-generated goals. A system that

lacks these features cannot be said to be aware of its environment or itself, and, therefore,
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is not a conscious entity. This does not mean that intelligence cannot be created through

artificial means. Rather, such intelligence would have to be instantiated through self-orga-

nizing pattern reformation functions (and not necessarily structure) found in real brains.

6.3.1 Self-organization, Order Parameters, and the Theory of 
Affordances

Both Skarda and Freeman and Millikan point to the need for including the behavioral func-

tion of representations into an account of what representations are. Skarda and Freeman

explicitly link their effort along these lines to Gibson’s theory of affordances:

Nervous system dynamics is a self-organizing process constrained by the requirement
that the system anticipate and incorporate the immediate consequences of its own
output within the larger constraints of regulating its well-being and the long-term opti-
mization of its chance for survival. This is subsumed in J. J. Gibson's theory of “a
dances.” (Skarda and Freeman 1987, 173)

Kelso also links his semantic understanding of order parameters to Gibson's theory o

dances. In each case, it is the less radical version of Gibson's theory that is embrac

failings of which I detailed above. So how does the dynamic systems theory of sem

information escape these failings when it is so closely linked to their source?

Kelso sees order parameters as the essential component in a theory of semanti

mation. Order parameters capture the relations between the sensing and sensed 

between organisms and their environment. Kelso argues further that order paramet

not merely descriptive tools, but rather have a metaphysical reality no different tha

systems whose relations they capture. Furthermore, order parameters are not inform

merely in the sense that they describe the relations of these systems for the dynam

tems analyst, but also, and more importantly, in the sense that they are what inte

influence in order to change the behavior of the system having the intentions. Beca
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this, Kelso contends that order parameters are intentional in nature. Taken at face value, this

is to confuse ‘intending to do something’ with the intentionality of beliefs and desire;

the behaviorist maneuver of replacing thoughts about objects with dispositions to b

toward them in particular ways. But if we understand Kelso's description of intentio

include acts in which the brain directs its attention to objects, and thereby changes it

parameters, we have the beginnings of an account of what intentionality and sema

are.

This additional component, the action of the mind/brain to alter itself, distinguishe

dynamic systems approach from Gibson’s direct realism. Whereas Gibson con

semantics to be provided from the environment, dynamic systems theorists view sem

as a function of both the environment and the mind/brain. The latter view may seem

evident: semantics has to do with the relation between a concept and what it is about

ever, dynamic systems theorists, unlike computationalists, do not view the environ

and the mind/brain separately. All semantic information is context-dependent, becau

state the mind/brain is in when attending to the world is dependent on the state of th

ronment. The mind/brain self-organizes around environmental signals; it does not 

abstract symbols and then assign them to environmental features.

This is true even in the case where the mind/brain is focused on its own ideas. 

case, environmental signals include the mind/brain's own functioning, i.e., feedback

its own mechanisms. Remembering and reflecting are not merely dispositions to a

reenactments of processes that accompanied perception and action with attention d

these reenactments. Here, attention ought not to be confused with conscious awa
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The mind/brain attends to an event or object when it allocates resources to process signals

corresponding to that event or object. Awareness of this process need not accompany it. 

Although humans are capable of drawing their attention to arbitrarily defined catego-

ries, the process of evolution has led to mechanisms for resource allocation based upon the

needs of the human organism. This introduces the concept of value into the dynamic sys-

tems account of the mind/brain, a concept that, as we will see, Gerald Edelman makes much

of in his selectionist theory of brain function. Order parameters contributed by the mind/

brain are not arbitrary. They have been constrained by evolution for the benefit and repro-

duction of organisms. Value is this inherent predilection of mind/brain mechanisms to

guide the organism to beneficial outcomes. The world is seen by the organism through a

prism of what is good or useful to it. The concept of value makes another connection to the

less radical version of Gibson’s theory: objects are perceived in terms of their affordance to

the perceiver. The question is how ‘direct’ this perception is.

The perception of affordances is direct when it is guided by inherent value mecha

in the sense that the order parameters necessary for the system attaining the ‘corre

need not be contributed by the efforts of the mind/brain, because they are already

parameters of the mind/brain. [Value is the predisposition of an organism to perce

object as useful to it. Without value, there cannot be affordances in Gibson’s sense, b

semanticity is not a property of a signal, and, therefore, the optic array alone cannot p

meaningful information. Perception is only as direct as the dynamic neural processe

result in an organism's taking a particular attitude (e.g., perceiving something as ‘c

able’) toward what is perceived. That semanticity depends on an organism’s attitude t
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the world indicates that semantic analysis can only be applied to states of an organism, not

bits in a computer or action potentials in a neuron.]

The discussion so far has been an abstract analysis of how dynamic systems theory

applies to questions about the origin and nature of semantic information. I turn now to

actual applications of dynamic systems theory to understanding human semantic capabili-

ties. In particular, I will describe how dynamic systems theory casts human categorization

abilities in a new light.

6.4 How Dynamic Systems Theory Helps Explain the 
Nature of Categorization

In chapter 3, I analyzed Phillipe Schyns’s application of SOFM networks to model p

type effects in categorization. An important assumption of Schyns’s work is that prot

effects reveal the nature of the conceptual structures underlying human categorizatio

is a hotly disputed assumption (Armstrong, Gleitman, and Gleitman 1983; Barsalou 

Lakoff 1987), especially given Rosch’s (1978) insistence that the prototype theory o

egorization does not imply anything about the psychological mechanisms that give 

prototype effects. The debate centers around the differences between categories, c

effects, and concepts.

6.4.1 Most Categories Possess Graded Structure

The classical notion of categories is that they are collections or sets of individuals gr

together according to well-defined membership functions. These membership fun

provide a list of the features that an individual must possess in order to be a membe

category. Wittgenstein’s (1953) famous example of the category game called into question
263



t cate-

appear-

ategory

flects

65) to

ity to

ctures

hether

uding

itman

 non-

t the
whether the necessary and sufficient conditions could be enumerated for all categories.

Rather than a set of necessary and sufficient conditions for membership, some categories

seem to be defined by family resemblances, none of which are in themselves necessary for

membership.

The pioneering work of Rosch and Mervis (1975) on prototype effects gave additional

credence to the family resemblance theory of categories. Categories appeared to possess

graded structure, which is to say that there are degrees of membership for categories. Sub-

jects were asked to rate individual objects on how well they represented the category to

which they belonged, and what emerged was that people consistently apply similar graded

measures of how well an individual represents a class. Rosch’s explanation was tha

gories consist of clusters around a prototype. Later, Rosch and others explained the 

ance of graded structure as just that, appearance. Graded structure was really a c

effect, the result of applying a concept of a category in a particular situation. This re

the competence-performance distinction employed by some linguists (Chomsky 19

distinguish between an individual’s abstract knowledge of language and their abil

apply it. Concepts, as opposed to categories, are the actual psychological stru

employed by humans represent real world and abstract categories. The question is w

graded structure effects reveal anything about the nature of concepts.

Graded-structure effects have been found for a wide variety of categories, incl

categories that are generally held to be classical. Armstrong, Gleitman, and Gle

(1983) discovered graded structure effects in categories such as odd numbers, with the

accompanying difference in recognition and learning times between prototypical and

prototypical members. Armstrong, Gleitman, and Gleitman conclude from this tha
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notion that graded-structure effects reflect human conceptual schemes is flawed since it is

inconceivable to them how a graded structure category of odd numbers could be applied to

math. Rather surprisingly, Pinker and Prince (1999) have recently discovered graded-struc-

ture effects in the linguistic category of irregular verbs. When they applied their method-

ology to regular verbs, however, they discovered no graded-structure effects. They

concluded that the category regular verbs is classical in nature. Barsalou (1987) has also

found graded-structure effects in ad hoc categories, such as things to eat on a diet.

The early work on graded-structure effects suggested that the results were quite robust,

with people agreeing with one another as well as with themselves over time about the

degree of membership for various individual items. Barsalou (1987), however, demon-

strated that this is not the case. In fact, degree-of-membership judgements vary over time

for individual persons as well as between people. Barsalou found three different types of

typicality used for making judgements—closeness to central tendency, ideals asso

with a category, and how frequently an individual is perceived as instantiating its 

gory—and that different measures of typicality were used in different contexts. He

noted that linguistic context can alter the graded structure, as can change of persp

People perform poorly at conceiving the typicality judgements of others. Even for ca

ries that are supposedly classical in nature, where people employ definitions to dete

membership, it has been found (Bellazza 1984) that the propositions involved in the

nitions that people use change over time, with changes occurring in time scales of a

or less.

One approach to dealing with graded structures and their instabilities is to dismiss

as mere noise or epiphenomena (Armstrong, Gleitman, and Gleitman 1983). As Ba
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points out, someone taking this approach must assume that “there are invariant co

structures associated with categories that we should be trying to discover” (Barsalou

114). This implies a pristine symbolic structure hidden beneath the messy wetware

brain. There are a number of reasons that mitigate this explanation of graded structu

First, classical categories are late-comers to, as well as exceptions in, the conc

universe. Real world categories such as bird and tiger preceded those of odd number and

regular verb. It is likely that the appropriate wetware for handling family resemblance

egories evolved first, and that the ability to handle classical categories was develop

of this. 

Second, this reasoning denies the usefulness of graded-structure categories. Fo

ple, the degree of belonging to the category of dangerous things could be immediately cor-

related with degree of response in an organism to the presence of a dangerous thin

Third, there is a lack of evidence confirming the existence of such pristine struc

Graded-structure effects are real, and the human brain demonstrates immense va

both between individuals and within individuals. This is not to draw the fallacious con

sion that lack of evidence demonstrates the theory’s falsehood, but rather to put th

on those making the claim in the face of graded-structure effects. An alternative to 

graded structure as indicative of category structure, the core+identification theory, 

holds that there are classical cores to categories and incidental properties that g

appearance of prototype structures, fails to explain how hedges like strictly speaking and

technically incorporate incidental properties into the core of a category (Lakoff 1987)

Finally, what would count as evidence in favor of such a cognitive structure? Give

graded structure effects are to be ignored, aren’t we then in danger of arbitrarily sel
266
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the results that back the theory? Nongraded-structure effects would be arbitrarily desig-

nated to be truly indicative of cognitive structure.

What graded-structure effects and their instability show is that humans qualify and

update their conceptual structures over time. This indicates that humans not only face the

general frame problem, but adequately overcome it. Arguments such as that from McDer-

mott (1987) that AI systems generally don’t face the frame problem and therefor

shouldn’t be too concerned about it only further indicate the distance between AI an

cognitive systems.

6.4.2 Why Dynamic Systems Theory Is better Suited to Explaining 
Graded Structure

The argument that graded-structure effects do not reveal the nature of the conceptua

ture of categories stands in contrast to another inference that computationalists no

make. The symbolic nature of language is supposed to reveal symbol manipulation 

anisms working in the brain. In both cases, however, we may infer mechanisms tha

duce the effects in question. This does not necessarily indicate precisely which mech

are needed to produce the effects; a range of mechanisms may be consistent with

observed. Whatever mechanisms are postulated, they should not be inconsiste

observed behavior.

The dynamic systems approach to explaining categorization effects and the m

nisms underlying categorization is to take graded structure to be indicative of how the

carries out these operations (see Thelen and Smith 1994). There is no classical co

cepts hidden behind the observed phenomena. The instability of concepts due to c

observed by Barsalou points to a mechanism sensitive to variations in context. Wha
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researchers discard as noise is really a feature of the brain’s categorization system. 

gory, according to the dynamic systems approach of Thelen and Smith, 

is created in context in a trajectory of internal activity in time. The trajectory always is
a complex product of the immediate context, the just prior internal activity, and the
tory of reentrant mappings between the heterogeneous processes that make up 
tem. (Thelen and Smith 1994, 182)

Reentrant mapping refers to a mechanism by which various neural systems coordina

responses. Simplistically, reentrant connections are connections from systems rec

input back to their sources. According to Gerald Edelman (1987), reentrant connectio

not a form of feedback of information, but a means for selection of function. More wi

said about this later. Thelen and Smith’s contention is that categories are formed th

the self-organization of neural systems as they move into attractor states, a process

dent not only on the internal working of the brain but also the environmental context

is to identify categorization not with a symbolic structure, but with an activity of a sys

of brain, body and environment. Even the prototype theory of conceptual structure

concepts are clusters as suggested by prototype effects, is rejected:

the behaviors that suggest criterial properties, essential properties, and graded
tures are all temporally specific manifestations of interacting processes. They a
behavioral and context-specific products of the activity of knowing, not the struc
components of knowledge. (Thelen and Smith 1994, 182)

Graded structure effects occur when the systems responsible for categorization are 

terized by shallow attractors. The emergence of classic categories is due to the dee

or strengthening of these attractor states. What this means is that the various inpu

could previously move the system out of one attractor state into another no longer eff

state of the system.
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The correlated or time-locked activity of neural subsystems do not produce ‘codes

other neural systems ‘read’ and interpret. No part of the brain reads off attractor sta

neural subsystems to determine what they are representing. The dynamic systems in

tation is that activity in neural systems that becomes correlated for specific inputs is cate-

gorization. Connections from these correlated subsystems to other systems then a

correlate their activity, and a process of recategorization proceeds. Recategorization c

reduce sensitivity to features of the input, thereby abstracting the initial categories. 

Beyond categorization effects and the processes in the brain that produce these 

there is nothing more, no hidden conceptual structure. There are performance and p

but no competence. This explanation of mind/brain may be understood as a form of B

iorism, the characteristics of which will be explicated later. First, I take a closer look a

relation between symbols and attractors.

6.5 Can Attractors Take the Place of Symbols?

Pinker and Prince (1999) suggest that two separate and distinct mechanisms are ne

explain the existence of classical and graded categorization. Pattern associators, 

those proposed by PDP modelers, are postulated for graded categorization. Pattern 

tive mechanisms, however, are inadequate, according to Pinker and Prince, for exp

how classical categories arise:

Classical categories are the product of formal rules.
Formal rules apply to objects regardless of their content—that is what “formal 
means.
Pattern associators soak up patterns of correlation among object’s contents—
what they are designed to do.
Therefore, pattern associators are not suited to handling classical categories.
269



 and

 sim-

er and

rmal

h are

. Also,

itions.

imilar

f PDP

ially

ork

ciative

e lan-

and-ins

es to.

ens or
We conclude that the brain contains some kind of non-associative architecture, used in
language, and presumably elsewhere. (Pinker and Prince 1999, 27)

As a critique of PDP methods, this is entirely unobjectionable. PDP systems do indeed

“soak up” patterns of correlation among object’s contents: “soaking up” is Pinker

Prince’s phrase for the superposition of information. Similar inputs generally produce

ilar outputs in most ANNs. As pattern correlators, this is a desirable trait, but, as Pink

Prince point out, this makes them unsuited for activities that consist of applying fo

rules.

As has been noted, nonlinear dynamic systems have bifurcation points, whic

points in parameter space where the dynamics of the system change dramatically

chaotic systems have strange attractors, which are extremely sensitive to initial cond

Similar inputs do not necessarily mean similar outputs in such systems. In fact, quite s

starting points for such a system can lead to radically different behavior. So, even i

models “soak up” correlations, making it difficult if not impossible to produce substant

different behavior on similar inputs, this does not imply that a biological neural netw

must be implementing a symbol manipulation system in order to produce non-asso

behavior. The question still remains whether nonlinear dynamic systems can produc

guage, whether their behavior can conform to rule-following.

6.5.1 Can Attractors Figure into Formal Systems?

The answer to the question that heads this section is clearly no. Attractors are not st

for symbols, which a symbol manipulation system reads off and applies formal rul

Attractors describe relatively stable behaviors of a system, and as such are not tok
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structural components; for example, a limit cycle attractor describes the oscillatory behav-

ior of coupled neuron-firing.

The challenge facing the dynamic systems theorist is to explain the emergence of sym-

bolic behavior without reference to internal symbol manipulation. Thelen and Smith (1994)

argue that a bootstrapping theory such as Pinker’s (1989), which holds that syntax

out of semantics, explains how categorization mechanisms in dynamic systems give

syntactic mechanisms. But this would only explain the origin of syntax, not its function

If the mechanisms that bootstrapping procedures produce are symbol manipulator

bootstrapping gains the dynamic systems theorist nothing. If they are not symbol m

lators, what are they?

Dynamic systems theory is not poised to answer this question at the moment. In 

general answer from dynamic systems theory is probably not in the offing. The rea

that the complex systems that give rise to language are likely to be too specific to e

in terms of, say, Hopf bifurcations. They undoubtedly have quite unique dynamics, w

can only be discovered through investigation of brain structures responsible for lang

The explanation that dynamic systems theorists can offer is that the manipulat

external symbols in behavior such as language use or map-making is an aide to the 

dynamics of thought and not a reflection of it. But this is little more than a slogan un

explanation of the internal dynamics underlying language use is given. All that is kno

that some nonlinear dynamic systems can produce what can be characterized as no

ciative behavior. This leaves open the possibility of a dynamic systems account of lan

use.
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6.5.2 Why Internal Symbols Are Not Necessary

Earlier chapters investigated the question of whether internal symbols and symbol manip-

ulators are sufficient for cognition. The question now turns to whether they are necessary

for language and other blatantly, if only externally, symbolic behavior. As Brooks (1990)

points out, symbolic behavior is the exception, not the rule, among biological organisms. If

dynamic systems theory can account for perception, categorization, and simple associative

reasoning, it will have covered not only the majority of cognition functions, but also the

bases for semantic interpretation of language.

This returns us to Clark’s notions of ‘representation-hungry’ processes and the p

programs that implement them (see sections 2.6-2.7). Recall that partial programs a

grams that carry out the representation-hungry portion of a task and interface with dy

systems for input and output from the rest of the task. Although enticing as an expla

of the dichotomy in types of cognition (pattern recognition vs. rule following), we h

already seen why such an approach is implausible. However, if we were to suppose 

dynamic systems theorists are correct in rejecting all internal symbols, we must none

admit that the behavior of dynamic systems can be mapped to external symbol sy

This happens every time someone writes or speaks a sentence. How might this be d

A minimal requirement is a system to organize the representational dynamic sy

into sequential processes. Lieberman (1984) contends that the sequential organiza

representations carried out by the language subsystems of the brain are an adapt

neural mechanisms for controlling motor sequences. But the ability to organize sequ

does not imply the need for symbols and rules. Kelso (1997) has developed dynam

tems explanations for the emergence of horse gaits and finger-tapping sequences 
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recourse to symbols and syntactic mechanisms for sequencing them. But mere sequencing

is not sufficient to explain language ability, because language demonstrates recursive struc-

ture. 

Horgan and Tienson (1996) claim that it is possible to have syntactically structured rep-

resentations, which would allow for recursion, within a dynamic systems framework, and,

therefore, without symbols and rules for manipulating them. They propose that the mind/

brain is a dynamic system that gives rise to a language of thought, and this language of

thought has syntax that demonstrates ‘systematicity’ and ‘productivity’ in encoding se

tic relationships. Systematicity means that the fact that two or more representations

cate the same feature to an object is encoded in the structure of the represen

Productivity means that the acquisition of representations of new properties automa

determines representations that predicate the properties to individuals. These two p

ties are meant to capture the constituent nature of syntax without relying on a part/

relation. To illustrate that dynamic systems can demonstrate these properties, Horg

Tienson cite two examples of connectionist systems that possess them: Pollack’s 

Recurrent Auto-Associative Memory (RAAM) and Smolensky’s (1990) tensor-pro

representations. RAAM networks and their variants have been employed (Berg 

Callan and Palmer-Brown 1997) as parsers, and have demonstrated some ability to

recursive structure. Tensor-product representations consist of vectors standing in for

sentations. Representations can be of linguistic roles, such as subject, and fillers, such as

the noun John, which are bound by tensor multiplication (a dot product). Sentences are

structed through vector addition of bound representations. A neural network trained
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variant of recursive backpropagation is then used to learn sentences and unbind fillers from

roles in response to queries.

One last property completes Horgan and Tienson’s characterization of the langu

thought: representations must play an appropriate causal role within the cognitive s

In other words, the syntactic structure of a representation helps determine the causa

the representation. 

Research in connectionist linguistics has produced alternatives to the part/whole 

standing of constituency. Language production might be realized not through the ap

tion of rules of composition to symbols, but through a process similar to these connec

alternatives. So rather than being saddled with the necessity of rules and symbols, 

left with Horgan and Tienson’s contention that a language of thought as they conceiv

a necessary condition for a cognitive system:

Cognizers must have a language of thought because getting around and survivin
world requires a representational capacity so vast that it is possible only for a co
that has a systematic way of constructing representations—i.e., syntax. Thus, n
cognitive systems must have syntactically structured representations, and hence
guage of thought. (Horgan and Tienson 1996, 71)

But if a language of thought is necessary, why wouldn’t a classical symbol system su

In fact, wouldn’t a classical symbol system be more desirable, given that it could h

constituent structure in terms of part/whole relationships?

6.5.3 Horgan and Tienson’s Dynamical Systems Hypothesis

Horgan and Tienson reject classical (rule-based) solutions to the supposed need for syntac-

tically structured representations because they believe that classical solutions require

exceptionless, programmable rules that operate over tokens acting as representations. Their
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reasoning for rejecting such rule-based systems is as follows. Exceptionless rules imply the

need for a vast number of rules enumerating every possible exception, i.e., each exception

must be turned into a rule. There must also be rules for transitions (Cognitive Transition

Functions or CTF) between ‘total cognitive states’, which are the intentional states 

cognitive system that can be composed of one or more simultaneously instantiated

tive states, which are in turn characterized by the various rules concerning how repre

tions are formed. The transition rules must also be exceptionless, creating an even 

combinatorial explosion. The transitions between total cognitive states are, therefo

‘tractably computable’, which is to say that they are not computable “by a physical compu-

tational device of the relevant kind” (Horgan and Tienson 1996, 26). Horgan and Tie

identify this as the frame problem, although it corresponds more closely to the update

lem. 

Horgan and Tienson’s argument in favor of dynamical systems theory over cla

approaches is rather crude:

1. CTFs are not tractably computable by classical approaches.

2. The transitions between states in most dynamical systems are not tractably co

able.

3. Therefore, CTFs must be subserved by noncomputable dynamical systems.

This negative argument is quite different from the positive argument that certain dyna

systems possess properties which classical systems do not, which are in turn neces

realizing cognitive functions. Horgan and Tienson only briefly mention nonlinearity 

entirely disregard self-organization and the slaving principle. One reason for the 
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omission is that their conception of dynamical systems is hierarchical. They envision three

levels of what they call ‘Noncomputable Dynamic Cognition’, which is simply cognit

realized by a dynamical system, the transitions of which are not computable. The leve

cognitive-state transitions, mathematical state transitions and physical implemen

The first is what they consider to be the level of the mental qua mental; it is the level of

transitions between total cognitive states. The second is the level of the dynamic sy

which is a mathematical description of the cognitive system. The third is the neural ne

that subserves the dynamic system. There is a unidirectional realization relation tha

these three levels:

Cognitive states are realized by mathematical states, and mathematical states a
ized by physical states; thus by the transitivity of realization, cognitive states are
ized by physical states. (Horgan and Tienson 1996, 146)

Points on the activation landscape realize cognitive states, and the semantic re

between cognitive states is structurally embodied through relative-position relations.

tions that are close, as measured in the n-dimensional activation space or in one of th

merable subspaces, on the activation landscape are close semantically.

Ironically, Horgan and Tienson’s position closely resembles the eliminativist form

connectionism proposed by Paul Churchland. Churchland (1989) similarly conceiv

semantic relations being expressed through relations within the activation space of 

nectionist network. Churchland, however, rejects the idea that points in activation 

correspond to representations and that distance relations between points determine 

ity. Instead, he views representations as partitions of the activation space, with the

tions being determined by the functions computed by the network. A representation

could therefore have a highly nonlinear contour and need not consist of continuous re
276



graph-

serve

serves

 of the

 that

 and

age of

ary con-

 can be

nd

 of the

xity.

 upon

f struc-

amic

f syn-
Points in activation space do not necessarily correspond to similar representations if they

are in similar positions, as they may fall within different partitions. Although Horgan and

Tienson stipulate that the topography of the activation landscape can also determine simi-

larity—two points on the same attractor basin could be similar due to the shared topo

ical position—they nonetheless hold that points in activation space are what sub

representations.

Like Churchland, Horgan and Tienson argue that a connectionist architecture sub

cognition, and that representations produced by the system correspond to portions

activation space of the connectionist network. Like Churchland, they reject the view

cognition consists of symbolic computation, with rules being applied to manipulate

produce symbol tokens. Yet, Churchland also rejects the notion that there is a langu

thought, whereas Horgan and Tienson argue that a language of thought is a necess

dition not only for linguistic behavior, but for cognition in general. So who is right?

6.5.4 Why a Language of Thought Is Not Necessary

Horgan and Tienson’s argument that cognitive systems need a language of thought

characterized as an argument from bigness. Only a systematic method of constructing a

structuring representations can enable an organism to handle the vast complexity

world in which it lives. This argument from bigness is really an argument from comple

It is both the number of representations and their many interactions that impress

Horgan and Tienson the need for syntactic structure. But explaining the emergence o

ture from vastly complex and unsystematic interactions is the very thing that the dyn

systems approach offers. The production of coherent light in lasers is not the result o
277



ically

s ele-

nt light

y syn-

be con-

t than

uage

s that
s general
 predi-
 form

direct
 chord
nson

nships

 rule-

 in this

 roles.

ause it

in. But

 to this
tactically structured interactions among its constituents. If coherent light can be produced

without syntactically structured interactions among its elements, why can’t syntact

structured speech be produced without syntactically structured manipulation of it

ments? Should we postulate a language of lasers to explain the production of cohere

from such vast complexity?

Horgan and Tienson’s argument extends not merely to behavior that is obviousl

tactically structured, such as language use. They hold that all representations must 

structed via a language of thought. What they mean by a language is quite differen

what is traditionally understood. Or so they think. Consider their example of a lang

with nonclassical syntax:

Imagine, for example, a language in which there is one class of pure wave form
can be used as proper names and there are other classes that can be used a
terms, relational terms, adverbs, connectives, and so on. When a general term is
cated of an individual, the general-term wave form and the individual name wave
are produced simultaneously. Sentences are analogous to chords, not to tunes. Slight
conventional modifications of the basic pure wave forms indicate that a word is a 
object, an indirect object, etc. Sound waves, like all waves, superimpose; so in the
none of the individual waves that went to make it up is tokened. (Horgan and Tie
1996, 73)

This example nicely demonstrates how a language could have constituency relatio

without part/whole relationships or decomposability. It is, however, an example of a

based symbol manipulation system, albeit an external one. Wave forms are symbols

language, and their are rules for composing them to produce symbols with syntactic

As an external system, it does not conflict with the dynamic systems approach, bec

does not imply that there is a rule-based symbol manipulation system in the mind/bra

Horgan and Tienson argue that what goes on in the mind/brain could be analogous

language production system:
278



sition

 aspect

o pro-

 least,

nizing

roduce,

wledge

 which

. Their

-based

 would

s tried

t least

le rela-

 it.

stems

nothing
If there are creatures with such a system of communication, it would hardly be reason-
able to deny that they have a language, or to say that their language lacks syntax, on the
grounds that their system of communication lacks classical constituency. Likewise, if a
system of mental representations encodes predication in a similar manner, it would be
inappropriate to deny it is a language of thought. Our suspicion is that the language of
thought is more like this than it is like the first-order predicate calculus or LISP. (Hor-
gan and Tienson 1996, 73)

If a language of thought is indeed like this example, then Horgan and Tienson’s po

that mind/brains are not rule-based systems manipulating symbols is false. The only

of this language that could be considered non-symbolic is the superposition function t

duce the chords. This could be achieved through a numerical solution. At the very

Horgan and Tienson would have to give up the noncomputable aspect of their theory.

An important reason for adopting the dynamic systems approach is that self-orga

complex systems are more powerful, in the sense of the range of behavior they can p

than rule-based symbol manipulation systems. Horgan and Tienson seem to ackno

this in their argument that cognition must be subserved by a system the transitions of

are not tractably computable (assuming their argument is not just a crude analogy)

case for a language of thought, however, contradicts this, suggesting that only a rule

symbol system can construct representations that enable an organism to survive. It

make more sense to wed dynamic systems theory with classical syntax, as Clark ha

to do, than to posit a weaker form of syntax underlying thought, because it would a

be able to explain more easily the production of language that does contain part/who

tionships.

Rule-following behavior does not imply rule-following mechanisms underlying

Explaining how such behavior arises remains the primary challenge for dynamic sy

theory. It is an empirical challenge, because, as we have seen with lasers, there is 
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about structured behavior that in principle prohibits nonlinear dynamical complex systems

from producing it. The processes through which perceptual representations arise, however,

have received greater attention, with theories such as Edelman’s Theory of Neuronal

Selection (TNGS) offering possible explanations.

6.6 Filling in the Details: How The Theory of Neuronal 
Group Selection Explains Why Certain Dynamic 
Systems Are Capable of Cognition

Edelman’s Theory of Neuronal Group Selection has been discussed throughout this 

tation in a variety of contexts. In this section, I endeavor to overview its salient feature

show how it fits into a dynamic systems theory of mind/brain. A similar effort has b

undertaken by Thelen and Smith (1994), although they primarily highlight its import

for a theory of development and give less attention to explaining higher cognitive fun

ing. I will focus on how the TNGS explains the emergence of perceptual categorizatio

how the mechanisms underlying perceptual categorization lead to memory and

abstract categorization.

6.6.1 What Is Neural Selectionism?

As a selectionist theory, the TNGS stands in contrast to instructionist theories of the brain

that posit that the function of neurons and neuronal groups is to pass informatio

instructions between neural structures indicating what the neurons and neuronal 

have detected or what the receiving neural structure should do next. Instructionists

liken the brain to a computer, with instructions being passed between neuronal group

they were executing a program. What is important to instructionist theories is the info
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tional function of neuronal behavior. Individual variation in neurons is unimportant and

generally considered noise.

The TNGS, as a selectionist theory, takes the existence of individual variability among

neurons, neuronal connectivity, and the make-up of neuronal groups to be essential to the

emergence of global neural behavior. The TNGS applies the population thinking of evolu-

tionary theory to neuronal groups, and, therefore, the emergence of massive variation in the

above-mentioned neural components is essential for useful neural functioning to arise.

Competition between neuronal groups that perform similar functions, referred to as degen-

erate structures, leads to a process of selection. Successful neuronal groups are not, how-

ever, differentially reproduced, as is the case with species or individuals according to

standard evolutionary theory, but rather they are differentially amplified, meaning that their

connections are strengthened and they are more likely to be triggered in similar situations

in the future.

In addition to providing an explanation for the existence of extreme variability in neural

structures within species and individuals in terms of evolutionary utility, selectionist

accounts also make sense of the fact that the majority of connections within brains are not

functionally expressed (Edelman 1989). These unexpressed connections are from degener-

ate groups that have lost out in the process of selection. 

6.6.2 Basic Mechanisms of Neuronal Group Selection

There are three basic mechanisms postulated by the TNGS: developmental selection, expe-

riential selection, and reentrant mapping. In development, neuronal connections branch and

diversify, forming what Edelman refers to as the primary repertoires. These are neuronal
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groups within given anatomical regions that vary in connectivity and function. There are

massive numbers of these variant groups within each region, and they form through cell

division, migration, death, process extension and neural activity (Edelman 1989). Unlike

Darwinian natural selection, the selective processes during development are not merely

eliminative, but also productive.

Experiential selection begins after most of the connections of the primary repertoires

are fixed. Experiential selection primarily produces synaptic alteration—the strength

and weakening of connections—rather than producing new connections:

during behavior particular functioning neuronal groups are dynamically selected b
action of various signals and mechanisms of synaptic change. This selection o
among populations of synapses, strengthening some synapses and weakening oth
process that leads to the formation of secondary repertoires. The consequence is tha
certain circuits and neuronal groups in such repertoires are more likely to be fa
over others in future encounters with signals of similar types. (Edelman 1989, 46

It is important to note that selection is not governed by a global, regulatory mechanis

picks out winners and losers any more than Darwinian natural selection is. Instead,

tion occurs through localist interactions between signals and neuronal groups. Also,

tion specifically works on neuronal groups, and not individual neurons, and so should n

be confused with mechanisms such as long-term potentiation.

Reentrant mapping is “temporally ongoing parallel signaling by separate maps 

ordered anatomical connections” (Edelman 1989, 49). Reciprocal connections be

neural maps are simple examples of reentrant mapping. Whereas these connections 

erally interpreted as feedback loops in instructionist theories, reentrant mapping, acc

to the TNGS, enables more complex selections to occur:
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Signaling in either a phasic or continuous fashion across reentrantly connected maps
permits temporal correlations of the various selections that occur among neuronal
groups within these maps. (Edelman 1989, 49)

Local processes of selection become global through the contribution of reentrant connec-

tions. The emergence of global maps is what underlies perceptual categorization.

6.6.3 Creating Minds: Reentrant Mapping, Categorization, and Memory

The correlation of selected groups within maps with specific types of signals leads to reac-

tivation of these groups when similar signals arrive. This correlation, plus the connections

of the correlated maps to behavioral and memory areas, produces the global mapping nec-

essary for perceptual categorization:

A global mapping is a dynamic structure containing multiple reentrant local maps (both
motor and sensory) that interact with nonmapped regions such as those of the brain
stem, basal ganglia, hippocampus, and parts of the cerebellum. The activity of global
mapping connects neuronal groups selected in one set of local maps (as a result of the
activity of feature detectors) to neuronal groups selected in other sets of maps (as a
result of the correlation of features that is established, for example, by the continuity of
motion.) (Edelman 1989, 54)

Perceptual categorization occurs as neural maps self-organize around incoming signals

through processes of selection and reentrant mapping. 

Categorization involves the grouping of disparate signals and responses to signals to

produce a unified response. Edelman identifies three ways in which reentrant mapping is

able to integrate signals:

1. By resolving conflicts between responses of different areas or different groups 

within areas to the same signal
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2. Through cross-modal construction of responses, which is when one area uses the 

output of another area for its own particular function (e.g., when features such as 

color and illusory contour feed into areas for motion detection, and thereby percep-

tually undergo apparent motion)

3. Through recursive synthesis, which is when higher-level maps influence the inputs 

they receive from lower areas such as those responsible for perceptual categoriza-

tion

Reentrant mapping also allows for the recategorization of signals. Neuronal groups

reentrantly connected to the groups involved in perceptual categorization can correlate their

activity with selected aspects of the activity of the perceptual groups. Memory arises

through such reentrant connections and further associations with what Edelman refers to as

value. Value is an inherent bias in the brain for achieving particular goals, which consist of

evolutionarily determined needs such as homeostatic regulation and reproduction. Memory

is the ‘storage’ of previous connections between perceptual categorizations and valu

tems. Recall is the recategorization of the activity of these associated areas. What Edelman

refers to as primary consciousness arises through the activity of these memory repertoi

and reentrant signaling between them and sensorimotor groups:

Primary consciousness thus emerges from a conceptually based recategorical m
(relating previous value-category sequences) as it interacts with current input cat
ries arising from the neural systems dedicated to present value-free perceptual catego
rization. It constitutes a discrimination of the acquired self-nonself memory from
current ongoing perceptual categorizations. (Edelman 1989, 97)

Systems related to the self are the homeostatic brain functions, i.e., the value sy

including the autonomic, hedonic and neuroendocrinal systems. Conceptually 

memory recategorizes associations between past perceptual categories and value,
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ing both modal (directly related to a particular sensory system) and amodal concepts. Pri-

mary consciousness is the process of relating, comparing, and updating priors concepts and

current perceptual categorization. A precursor to higher-order consciousness is the system,

presyntax, which, according to Edelman, consists of reentrant links between temporal

regions and the primary mechanism for conceptualization, the frontal cortex (with its con-

nections to value systems), and which orders concepts successively. This system is the

basis for thought, and is present in primates such as chimpanzees.

Higher-order consciousness frees the individual from the demands of the moment and

enables him to think about objects and events without connection to the real-time flow of

the world. Edelman defines higher-order consciousness as “the capacity that sustain

awareness related to plans” (Edelman 1989, 173). Essential to the development of 

order consciousness is the emergence of linguistic capabilities. Edelman adopts a se

bootstrapping account of the development of syntax in humans similar to that of P

(1989). Semantics arises from the conceptual systems described above, and is cou

phonological elements produced by a phonological system that appears on the scen

evolutionary novelty. The coupling of semantic and phonological elements, again th

reentrant connections, provides the first requirement for syntax: the lexicon. Then, 

when a lexicon is sufficiently developed, the conceptual apparatus may recur
treat and classify the various productions of language themselves—morphemes, 
sentences—as entities to be categorized and recombined without any necessary further
reference to their initial origin or to their bases in perception, learning, and social t
mission. (Edelman 1989, 174)

In contrast to Horgan and Tienson, Edelman considers linguistic capability an enhanc

to thought, one that allows for concept formation not fettered by the immediate dem

on the organism. This account coheres much better with the natural world. It is odd th
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should consider a lamprey or beetle in need of a language of thought in order to just survive,

and yet not observe them using its potential. What might pass as ‘planning’ in a rough

in the natural world, such as storing food for the winter, is really scripted behavior in

it is preset in the organism to carry out this behavior—as we have seen, this is the d

tion highlighted by cognitive roboticists to distinguish their work from robots execu

scripts. So, although a language of thought is not necessary for representing the w

surviving in it, linguistic capability is the essential component in the production of s

bolic behavior. Linguistic production is achieved, according to Edelman, without the 

for explicitly represented, pre-programmed rules; instead, rule-like behavior em

through reentrant connections and learning.

6.6.4 Why Neuronal Group Selectionism Does Not Imply the Perception 
of Affordances

Although Edelman has linked his theory to Gibson’s ecological approach, he has give

indications of where the two theories intersect. I propose that a selectionist theory o

function is essential to explaining how direct perception of complex entities such a

faces might arise. This is due to the fact that selectionist theories alleviate the need f

resentations to be formed by composition of primitive informational elements. Accor

to Edelman’s theory, however, mechanisms for perceptual categorization and valu

tems are distinct neuronal structures, and their connection requires another layer of r

If true, this rules out direct perception of what the environment affords.

Selectionism enables direct perception of complex entities in that the neural ense

responsible for perceptual categorization are selected from a host of degenerate (i

man’s sense) ensembles for the way they react to a set of incoming signals—in other
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how they treat the set of signals as a whole event. Each degenerate ensemble receives con-

nections from the input sites of perception and correlates its activity with these sites. The

winning ensemble determines how the system reacts to the signals as a whole. This allows

the system to bypass hierarchical steps of combining simple features into more and more

complex features. The key is the existence of degenerate structures from which an appro-

priately behaving structure can be selected. With sufficient variation in the structures, a

useful one is likely to exist. The selected structure would be equivalent to combining the

functions of lower-level feature detectors without requiring this lower-level as input. 

An analogy to this can be found in Darwinian evolution itself. It is rare to find a one-

to-one mapping between trait and gene; more often it is a one-to-many or many-to-many

mapping between traits and genes. This is to say that gene complexes and not single genes

are usually responsible for traits, and that gene complexes can produce more than one trait.

Traits, such as complex behaviors, are often not decomposable into primitive elements, and

primitive elements of traits generally cannot be mapped to primitive elements of the gene

complex responsible for them. What is selected for is a complex trait in itself and a gene

complex in itself, not individual genes to build the gene complex (in which case it would

not really be a gene ‘complex’). Similarly, a complex attitude toward a complex s

might be selected for by selecting a particular neuronal ensemble. Thus, a neuronal 

ble might categorize a collection of primitive incoming signals as a surface without pie

together edges, lines, and planes.

It is important to note that neural selectionism only provides a plausible mechanism for

the emergence of direct perception. It is also plausible in a selectionist account that p

tion is not direct. The perception of surfaces might be the result of several layers of
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ture selected for their responses to various levels of structure in the incoming signal. It is

also important to reemphasize that Edelman conceives of perceptual categorization and

value systems as separate entities. According to the TNGS, the perception of affordances

is not direct, but rather requires reentrant activity between distinct systems. Only if the

selection of perceptual categorization structures were dictated by the value systems would

it be possible for direct perception of affordances in the manner described above for sur-

faces.

Neural selectionism allows for varying degrees of directness in perception. It enables a

system to ‘skip’ steps in composing signals, to produce complex behaviors in respo

complex signals without having to decompose the signal into informational primitives

analyze their relations. In Darwinian evolution, species evolve through selection of 

plex traits from an abundance of alternatives. It seems likely that complex mental beh

would evolve through a similar process, rather than nature having to produce an ar

turally pristine structure such as a computer.

6.7 Selectionist, Self-organizing Dynamics Underlies the 
Functioning of Minds

Timothy van Gelder illustrated the differences between dynamic and computationa

tems by comparing the Watt centrifugal governor with a hypothesized computationa

ernor, an illustration that captures the basic differences between the two types of s

but does not address how cognition arises in dynamic systems. To address this, d

systems theorists such as van Gelder point to connectionist systems as examples

dynamic systems implement cognition. But as we have seen, connectionist systems
288



bear important differences from traditional AI systems, and computer implementations of

neural networks do bear many of the drawbacks for which van Gelder criticizes traditional

AI. Even if we establish that certain dynamic systems are not implementable via computa-

tional systems, and that the mind/brain is one such system, we have not established what it

is that makes the mind/brain different from a Watt centrifugal governor.

The aspects of minds that set them apart from dynamic systems in general are their abil-

ity to produce and reproduce representations. Representations arise as attractor states of the

dynamic system through a process of selectionist self-organization. Selectionist self-orga-

nization occurs through the competitive interaction of neuronal groups, which leads to

coordinated activity between neuronal groups through the strengthening of connections

between successful groups. This process occurs without explicit or implicit rules being exe-

cuted in the system and produces coherent behavior correlated with signals from the envi-

ronment. Reentrant connections between groups enables reproduction of this behavior

absent the presence of environmental signals, allowing for reproduction of representations.

This is the basis of memory.

The nature of attractors in the mind/brain dynamic system helps to explain cognitive

phenomena such as graded structure in concept formation and production. Shallow attrac-

tors are what produce graded-structure-concept effects. Deeper attractors enable cognitive

systems to employ classical categories. Although connectionist systems are capable only of

associative operations on these concepts, dynamic systems can perform a wider range of

operations, as small changes in parameters can give way to starkly different behaviors in

the system. Demarcations need not be gradual, but rather can be sharp and dramatic.
289



lman’s

 brain
Thus, a language of thought is not required to explain how dynamic systems carry out

what is considered syntactic behavior. In fact, employing a language of thought to explain

how dynamic systems can do syntax weakens their appeal, for then they reduce to neurally

implausible connectionist systems. A more neurally plausible explanation of how neural

dynamic systems achieve categorization, memory, and perception is given by Ede

Theory of Neuronal Group Selection. How this sketch of the mechanisms behind the

bears on what the mind is I turn to in the next chapter.
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Chapter 7 Putting it all Together: An 
Eliminativist Theory of the 
Mind

Computationalism introduces a layer of mental architecture between the behavioral outputs

of a system and the mechanisms that produce them. This layer consists of chunks of infor-

mation, symbols, which figure into rules, whether implicit or explicit, which in turn pro-

duce more chunks of information. This additional level of explanation was developed to

avoid the objections that doomed behaviorism. In so doing, computationalists have created

their own set of problems. Computationalism places constraints on the realizing physical

hardware: it must have mechanisms that subserve symbols, such as stored electric charges

in computers. A theory that proposes mechanisms that cannot be decomposed according to

their informational content must be rejected out of hand.1 This in turn places constraints on

what the hardware can do, and from this emerges the frame problem.

But the frame problem is more a symptom of a deeper disorder rather than the disorder

itself. This deeper affliction is computationalism’s inability to explain what makes a p

of information information-about-the-world, what makes it semantic information. One

aspect of this affliction is the symbol-grounding problem. But accepting the sym

grounding problem as formulated by Harnad (1990) suggests that there is a solutio

we can overcome computationalism’s fundamental difficulty if we just figure out

1.  This is the gist of one of Clark’s objections to van Gelder’s Dynamic Systems acc
of mind (see Clark 1998).
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proper way to link symbols to the world. And this in turn rests on the assumption that sym-

bols can be grounded in the first place.

Not all computationalists believe that symbols even need to be grounded. If we follow

this line further, we are led to the conclusion that grounding symbols does not change their

fundamental nature. In this case, we must reject the notion that symbols can be grounded

in any meaningful sense of the term. In psychological terms, we are left with a pure com-

petence theory of mental events. Rules are churning within the machine, producing partic-

ular mental events regardless of the environment. The variations of performance in

perceptual categorization, for example, are simply noise. Whether the machine is situated

within the world or not is irrelevant to what is going on inside the machine’s head.

Computationalism has diverged into two extremes: one that recognizes computa

ism’s practical flaws and attempts to patch it, and another that rejects the need fo

patches and isolates mind from the world. Those who reject the need for fixing com

tionalism with kludges such as partial programs linked to dynamic systems have cor

assessed the consequences of computationalism. If computationalism is correct ab

nature of mind, then linking symbols to the world is irrelevant. A token is a symbo

something by virtue of its formal properties, not due to a causal link to the world. T

those seeking to improve the performance of computational agents by adding nonc

tational enhancements are not moving any closer to constructing a mind than those w

purely computational methods.

The alternative to pure computationalism is, therefore, not to link it to the world, b

reject it completely. This means rejecting the intermediate layer between behavior an

izing mechanisms, rejecting the layer of concepts and information-processing. Cog
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scientists reintroduced this layer to explain what behaviorism could not. They are left

unable to explain their own explanatory device. They have introduced entities with proper-

ties so distinct from their realizing hardware that they require accepting the principle of

property dualism. An approach that rejects the existence of these mental entities or proper-

ties over and above the properties of the systems that supposedly bear those mental charac-

teristics would, however, reintroduce a form of behaviorism. The question is whether it

would also harbor the same failings that lead to the almost universal rejection of behavior-

ism and the cognitive turn.

7.1 Dynamic Systems Behaviorism: An Alternative to 
Computationalism

It is the belief that the mind/brain creates and stores discrete concepts that underpins the

notion that the mind/brain is a symbol processor. It is this belief that must be rejected. I pro-

pose that the mind is instead a dynamic system incorporating brain, body, and environment.

The states of this system are not symbols standing in for concepts, but attitudes of the brain/

body to the environment. These attitudes are formed by interaction with the environment,

and are only abstracted from their environmental context by directing neural resources

toward the processes that form these attitudes: the process of recategorization as described

by Edelman. As one moves up levels of abstraction, contributions from the body and envi-

ronment become less and less, and the attitudes become dependent more on neural pro-

cesses. They are attitudes toward attitudes, neural processes directed toward brain/body

processes that emerged within a particular environment. Computationalism tries to skip this

hierarchy and move immediately to abstract symbols, but it is the lower level that enables

the production of more abstract attitudes. By abstract attitude, I mean a state of the system
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that does not require immediate environmental stimulus for it to form, or that can be formed

in response to individuals across a type. This is to say that its formation is less sensitive to

environmental context.

So what is an ‘attitude’? At the most basic level, that of perception and perceptua

egorization, it is an attractor state of the brain/body/environment system. It is a neur

tern that emerges from the interaction between signals from the environment that a

through the body as a result of bodily interactions with the environment and the n

ensembles. Attitudes are not like the dispositions of behaviorism. They do not nece

dispose the system toward overt behavior, although that is one function of them. Th

also dispose the system toward particular internal behavior, namely the formation of

coherent patterns within the brain. This is done by alteration of brain chemistry in co

tions between and within groups of neurons, and not by storing a particular pattern a

ticular spot. The formation of attitudes through the self-organization of neuron ense

with reentrant connections makes possible the recreation of these attitudes by the 

itself without environmental stimulus—the abstract attitudes described above.

Thus, in addition to the formation of a particular type of neural pattern within a pa

ular context, whether the context is environmental or internal to the brain, attitudes ar

distinguished by their effects, whether internal or external. For example, the process 

egorization consists of the formation of an attitude that produces category effects, s

enabling the organism to react to a type of predator rather than having to decide if eac

vidual of the type is a threat. Following Thelen and Smith (1994), the nature of the p

formed is what produces the instability effects related by Barsalou (1987); these effe

the result of unstable patterns. There is nothing beyond the formation of attitudes an
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effects, no informational structure that stands in for an object and is stored somewhere in

the brain. What are stored are changes in neuronal chemistry that dispose a particular

neuron or neuron ensemble to participate in the formation of a pattern. These dispositions

are distributed across many neurons, and are superposed with other dispositions.

The attractor states of a system or its subsystems are not analogs of symbols. They are

not abstract tokens produced through the application of rules. They do not figure into rules.

They are continuous-time activities, firing patterns that a system moves into. What this

implies is that thought is not a discrete entity produced by the brain, nor the process of pro-

ducing such entities. It is an ongoing action, the formation of a pattern of activity over time.

This activity also does not cease once the pattern is formed, firing once in synchrony and

then ending, although it does dissipate as other thoughts are generated.

Functionalists individuate mental states according to their function and their relations

to other mental states. Dynamic Systems Behaviorism (DSB) individuates mental states by

their function and their interaction with other states. What is required is not a mere semantic

relation nor a possible causal link between states, but actual interactions. This is not to say

that unexpressed causal links—links between states that could be expressed if, s

system drew its attention to these links—are unimportant. They also figure into the 

fication, but of primary importance is actual behavioral interaction between states an

tems. That the interactions between particular systems are important distinguishe

from computationalism, because these interactions are not between abstract entities

a system does and how it is causally linked to the world affects the meaning of the

from other systems to it. Thus, Damasio emphasizes the retroactivation of areas rel

perception as important for determining the nature of a representation, and Edelma
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larly points to the reentrant connections to perceptual areas for producing perceptual cate-

gorization. A symbol system would have no need to have links to particular areas, since the

symbols they produce could be stored elsewhere and links could be maintained to these

symbols.

The notion of a ‘mental state’ in DSB therefore bears a different meaning than in 

putationalist theories. It is simply a specification of the parameters of a system, its str

and behavior. Mental states are eliminated in DSB not because they are reduced t

fundamental physical properties, such as reduction to a neuron ensemble firing, but b

they are exhausted by a neural dynamic systems description. There is nothing to a 

state beyond its specification according to a dynamic systems explanation of the 

activity involved and the effects it produces. The slaving principle captures the intera

between ‘mental state’ (the global order) and the neural elements ‘realizing’ it. 

Thus, DSB avoids anti-reductionist arguments such as that of Crane and Mellor (

by accepting them. Crane and Mellor argue that reductive physicalism founders on th

that mental states bear properties that cannot be found in the realizing elements. One

ple they give to illustrate this is the emergence of behavior in a gas conforming to the

gas law that cannot be derived from the individual behaviors of the gas molecules

emergent, global behavior is exactly what dynamic systems theory is directed to

explaining. And the nature of this behavior—its causal origin, interactions, and f

behavior—is exhaustively explained by dynamic systems theory. The mistake of ant

icalists is to conclude that there must be a form of property dualism separating the ‘m

from the physical. The only dualism is between the global order and the local intera

from which it arises. They are connected in dynamic systems theory by the slaving p
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ple and the notion of ‘circular causality’. The illustration given by Crane and Mellor ca

turned against them as an argument for physicalism, albeit a nonreductive physicalis

emergence of global order can be explained by considering the local interactions

underlying elements. The difficulty lies in the fact that the relationship between the g

and local orders is nonlinear. In such a system, we would not expect to find global p

ties in local elements, nor would we expect to be able to linearly compose local prop

to produce global properties. But this does not mean that we must postulate a ‘menta

to explain the appearance of global properties not found in the neurons. The rela

young fields of synergetics and complex systems are directed toward explaining such

gence; Crane and Mellor have rejected physicalism too soon.

7.1.1 Behaviorism’s Flaws and How to Avoid Them

DSB does not identify being in a particular mental state either with behaving in a particular

publicly observable manner or a disposition to behave in such a way. Instead, DSB identi-

fies being in a particular mental state with a relation between environmental input, internal

behavioral output, and the causal relations between the neural subsystems involved. Even

this characterization is somewhat incorrect, because a traditional input-output relation pre-

supposes a single direction of causality, which is violated by the circular causality of self-

organizing systems. 

This is a move similar to that of functionalism (just how similar will be discussed in the

next section). The question is whether this move protects DSB from the criticisms leveled

against behaviorism. 
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Behaviorism is open to the charge of chauvinism in its attribution of mental states,

which is to say that it denies that a class of persons to whom we would normally ascribe

mental states actually possess them. An example, offered by Putnam (1963), is that of

super-spartans, who show no publicly observable behavior when experiencing pain, and, to

defeat the objection that they would still have dispositions toward pain behavior, super-

super-spartans, who do not even have a propensity for pain behavior when experiencing

pain. There are two possible responses to such a charge against DSB. First, states like pain,

hunger, thirst, etc., could be denied to be attitudinal states. There need not be an attractor

state formed for an organism to feel pain. Pain is plausibly a direct stimulation of certain

value regions. These value regions would then instigate behavior, unless some other state

or subsystem intervened. The possibility of thwarted behavior also answers the objection

that behaviorism cannot explain the defeasibility of a behavior-mental state link with

invoking other mental states. Second, pain could be allowed to be an attitude of the organ-

ism without any necessary behavioral outputs, but with ‘normal’ outputs (in the sen

normal function). Again, other internal states could intervene under abnormal cond

preventing normal pain behavior.

Another objection to behaviorism is that complex mental states, such as believin

Martin Bormann died while trying to escape Berlin in 1945, cannot plausibly be expla

in terms of publicly observable behavior or dispositions to publicly observable beha

Again, DSB makes the similar move as functionalism and relies on an intricate web o

tudes toward attitudes, all behaviorally expressed in the brain, but not necessarily 

body.
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The fact that DSB uses the same maneuvers as functionalism to escape behavi

flaws suggests that DSB is just a flavor of functionalism. There are, however, importa

ferences, to which I turn now to highlight.

7.1.2 How Dynamic Systems Behaviorism differs from Functionalism

As Block (1978) points out, behaviorism and functionalism differ only by virtue of fu

tionalism’s stipulation that mental states are defined not only by their input-output 

tions, but also by their dispositions to cause other mental states. Turing-ma

functionalism interprets the input-output relations to be specified by a machine tabl

maps symbolic inputs to symbolic outputs. Although numerous variations on function

have been proposed, most are based on the information-processing model of mi

exception to this pattern is the teleological functionalism of Sober (1985) and Mil

(1984, 1993), who identify function of an object not with its informational input-out

relations, but rather with its purpose or role within a system. As we have seen with 

kan, the purpose of an object is interpreted in terms of its evolutionary selected role

DSB follows teleological functionalism by rejecting the computer model of mind 

its underlying Turing-machine notion of function. But it also rejects Millikan’s posit

that function should be understood in terms of evolutionary selected role. Instead, m

states are individuated by the environmental context (both the sensory input and its s

the behavior elicited within directly related neural subsystems, and the internal and ex

behavioral outputs or dispositions (if any). 

Stipulating that it is the environmental context that helps determine mental state

not just sensory inputs grants ecological considerations a limited role. The reason en
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mental context is important is that mental states do not form merely in response to signals

coming in through sensory organs, but also through the active investigation of these signals

by an organism traversing its environment. For example, Thelen and Smith (1994) docu-

ment the fact that human infants learn the dangers of navigating slopes through actively

navigating them, and not by generalizing from their fear of cliffs. An infant who learns that

a slope presents danger when it crawls needs to relearn this fact for when it walks on slopes.

That a slope is a dangerous is thing is not learned by the infant through visual inspection

and generalization to past experiences or innate fears. It requires active investigation. This

is, it will no doubt be argued, just another form of sensory input. It is, however, highly con-

text dependent and requires the activity of the body within the environment.

Some variation of Descartes’s evil genius is often trotted out to demonstrate th

environment is not relevant for determining what mental states are, since, it is suppo

is possible in principle to simulate all the signals coming from the environment and 

them into an isolated mind/brain. Presumably, this mind/brain would form the same m

states as if it were in a real environment. That it is probably impossible in fact to achi

often brought up (Dennett 1991) as a reason to doubt its relevance, but there is also

to suspect that it begs the question of what mental states are against ecological an

tionalist approaches. The evil genius would not only have to generate signals corresp

to what emanates from the environment, but also provide feedback for the isolated

brain’s voluntary actions. This means the evil genius would have to know what the ind

ual is thinking. This would either require a priori knowledge of which set of input-ou

relations and neural states map to which mental states for the particular individual, be

neural architecture is highly variable and the effects of experience reinforce this varia
300



or require that we assume that behaviorism is true and only input-output relations matter.

If we take the former position, where would this a priori model come from, if not from an

individual located in a real environment? This implies that the evil genius himself can only

determine mental states in terms of their environmental context. Supposing that the evil

genius is omniscient and just knows begs the question of whether omniscience is possible

in principle. If we take the latter route, we have a thought-experiment that applies only to

behaviorism.

The behavior elicited within the directly related neural subsystems refers to the activity

of pattern formation in neuronal ensemble firing. The self-organization of neural firing

around incoming signals through neural selection that leads to the formation of firing pat-

terns is, in itself and without need for causal connections to other mental states, a defining

feature of mental states. This is one way in which DSB augments functionalism.

Internal behavioral outputs consist of the internal causal relations between neural sub-

systems. This is the same characteristic of mental states that functionalists introduced to fix

behaviorism, although the mechanisms are different than those proposed by Turing-

machine functionalists, as the previous chapter makes clear. This difference in mechanism

is of no little importance, as the next section highlights, for it frees DSB of the charge of

liberalism in ascribing mental states.

These characteristics are not meant to be necessary and sufficient conditions for a phys-

ical process to qualify as a mental state. The category of mental state is not classical in

nature, but rather consists of states bearing family resemblances. The only necessary con-

dition is the formation of patterns of neuronal activity, although it is not a sufficient condi-

tion.
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DSB could be considered a form of teleological functionalism but for three differences.

The function of a mental state, its causal relations and environmental context, is understood

not in terms of its evolutionary selected role, but its neurally selected role. The context of

neural selection is both the brain and the environment over the life of the individual. Evo-

lutionary selection occurs within populations of individuals and species and the environ-

ment over large time-scales. Second, DSB contains an additional component, the pattern

formation of neural systems, that constitutes the phenomenal content of mental states.

Finally, DSB explicitly eschews the notion that the function of neural structures is to pass

pieces of information. Teleological functionalism is perfectly consistently with the infor-

mation processing model of mind, because the evolutionary purpose of neurons could be to

pass pieces of information just as the evolutionary purpose of the heart is to pump blood.

Accepting teleological functionalism does not necessary imply accepting an alternative

understanding of neural structures to that of the information processing model, whereas

accepting the DSB model requires rejecting the information processing model.

7.1.3 Avoiding Liberalism

Because Turing-machine functionalism is a plausible expression of teleological function-

alism, the latter does not necessarily avoid the defects of the former. Thus, contrary to

Sober’s (1985) claim, teleological functionalism is open to the charge of liberalism, w

is the mistake of attributing mental states to systems that we would not normally reco

as possessing them. Ned Block’s (1978) ‘homunculi head’ thought-experiment illus

this failing of functionalism.
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Block imagines a situation in which a vast number of people, the population of China,

are given two-way radios that connect them with one another and with an artificial body in

a way that mimics the connections in the brain and body of a particular person. Each person

mimics the activity of a neuron in transmitting the appropriate signals to the person-neurons

to whom he is connected. In this way, the population of China could mimic the functional

organization and activity of a real brain, and therefore, according to Turing-machine func-

tionalism, would have be considered as having mental states.

Teleological functionalism is supposed to avoid liberalism by defining function as the

role of object or structure within the system it resides. Thus, the teleological function of the

heart is to pump blood. So what is the function of a neuron? Teleological functionalism

does not proscribe the neuron’s role from being that of passing information to othe

rons. If it is, then teleological functionalism falls prey to the homunculi head though e

iment. And this is an empirical matter, not a theoretical one. 

DSB can be seen as a subset of teleological functionalism that is disjoint from Tu

machine functionalism. It makes more specific claims about the functions of neurons

brain, and these functions do not conform to a machine table description. It is not pla

that a group of humans could mimic the self-organization of the brain by following a s

input-output rules. To do so would require specifying a set of rules for each human to

rules that would have to conform not only to the nonlinear behavior of neurons, but al

interactions of neurons. It would also have to take account of the slaving principle

means that somehow a global order would have to control the local interactions 

person-neurons without it having to backpropagate to each person-neuron. The ti

backpropagation to occur is not the issue here, and therefore Block’s argument th
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length of time for the processes to occur is irrelevant is itself irrelevant. Backpropagation

of a global order simply does not occur, because the global order emerges contemporane-

ously with the local interactions. Furthermore, because nonlinear behavior cannot be

decomposed by its very nature, it is implausible that people could be given a set of rules to

mimic it.

What teleological functionalists were attempting to argue is that the behavior of neu-

rons cannot be captured by input-output mappings of information. DSB fills in this argu-

ment. The burden of demonstrating that a homunculi head could reproduce the behavior of

the brain lies squarely with those who believe it can, and there is little reason to believe they

will succeed. Success would require abandoning a rule-based approach, and therefore,

abandoning computationalism.

7.2 Dynamic Systems Behaviorism as Ecological 
Externalism

All forms of externalism reject the notion that mental states supervene on brain states. The

varieties of externalism are distinguished by the type of non-neural component they deem

necessary for mental states to be individuated. Evolutionary externalists point to the organ-

ism’s evolutionary history as what distinguishes similar internal states. Ecological e

nalists point to aspects of the environment as that additional component. In Chapt

argued why evolutionary externalism should be rejected. I also suggested that the g

principles of ecological externalism were correct, although the specific details of the

ant of ecological externalism examined there, Gibson’s ecological approach, may be
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rect. Here, I will flush out how dynamic systems theory serve as a foundation for ecological

externalism.

It was noted that the mapping between external informational structure and the environ-

mental features that cause it may not be unique, and that some further specification of the

relationship, perhaps akin to Tye’s optimal conditions, needs to be applied to this co

tion. The notion of optimal conditions, however, was also found to be too stringent.

then should we relate the internal and external in such a way that both captures the f

ity of representation found in human categorization as well as helps explain the inter

of the two?

I suggest that the notion of an attractor in state space is just this needed conc

framework. Attractors are not tokens that require a mapping function. They are s

states of the system, positions in state space that the system moves to for a certai

parameters. Thus, there are ranges for the parameter sets that, when taken on by the

result in its settling into an attractor. We have seen in van Gelder’s example that th

of the Watt governor’s flywheel does not map uniquely to a state of the steam engin

vice versa. But what is the “system” when we consider cognitive beings? The system

consists of both the internal and external factors, the organism and its environmen

capture the relations between them through dynamic systems analysis. The enviro

adds parameters to our description of representational states.

How the environment and how the organism may vary, as well as how they may covary,

such that a coherent pattern is produced is again captured by the dynamic equations

system. A range of external parameters—configurations of the environment and the

tioning and motion of the organism—and a range of internal parameters contribute 
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same attractor state. How they are interrelated, and thus, how they interact, is therefore

described by the dynamic equations governing them.

The notion of optimal conditions and the unique mapping of informational structure to

environment is replaced by dynamic equations governing the interrelation of external and

internal parameters. This does not imply that Gibson could not be right that visual percep-

tion uses an optic array as he describes, only that the information contained therein is not

determined by a uniqueness mapping.

The “fuzziness” of human categorization is a product both of the variability of env

ment and variability of human neural and physiological makeup, including the varia

within an individual over time. A specification of representational mapping based o

and-only-if conditions does not capture this variability. Specifying Normal condition

impossible in the face of stochastic relationships between environment and neural 

ior. Thus, we must adopt a framework that can account for these stochastic relation

not merely as relations of probability distributions (a distribution corresponding to env

mental tokenings and a distribution corresponding to internal tokenings), but also asrela-

tionships over time. The fuzziness of human categorization has, as we saw in Chapt

temporal dimensions—representations are patterns of the system over time and 

over time. Representational mappings are not necessarily stable over time. How 

account for this? Dynamic systems theory has the tools for expressing such tempor

tions.

Because of its temporal aspect, dynamic systems theory is particularly suited for u

standing how an organism’s actions over time contribute to its representation. Gibso

tended that an essential aspect of visual perception was the organism’s motion
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environment, allowing it to sample the scene. The position of the organism over time, the

ambient light it receives over these positions, and the temporal behavior of its neural pro-

cesses all become parameters of the representational system. This ability to integrate over

time, as well as its ability to capture continuous, stochastic relationships, are what com-

mend dynamic systems theory over symbolic approaches.

7.2.1 Swampman Returns

If representation consists of an environment-organism system governed by dynamic

equations, it would seem to imply that mental states supervene on system states. There is

one problem with this implication. If we interpret this to mean that if the system’s pa

eters change, there must be a corresponding change in the mental state, then the de

of supervenience must be rejected. This is because parameters may change and

system remain in a stable state: change in parameters does not imply change in men

We can’t even say that mental states supervene on parameter sets, because this wo

them as fixed in their relation to mental states. A counterexample of such a fixed rel

ship can be seen in the phenomenon of hysteresis. As a system evolves from an

parameter configuration and moves from one stable state to another, this evolution

necessarily reversible. The boundary between stable states changes as the system 

the reverse direction (passing through the same parameters over time, except in re

and so we can’t map a particular set of parameters to a particular state of the system

condition and evolution over time is essential. Thus, mental states do not superve

parameter configurations. Rather, they supervene on attractor and repellor states.
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What does this mean for Swampman? Swampman is once again a microphysical dupli-

cate of Davidson—the hardware implementing his internal dynamic processes a

same—placed in the same environment as Davidson. However, we must add one

specification for Swampman, namely that his internal dynamics have the same initia

ditions as Davidson’s. In this case, Swampman upholds our strong intuition that he 

the same thoughts as Davidson. Given the same implementing mechanisms and sam

ing conditions, the two representational systems that are Swampman-in-his-enviro

and Davidson-in-his-environment will reach the same attractor states. If we violate th

tial condition requirement, all bets are off, although, depending on how strong the par

attractor corresponding to a mental state is, they may still have the same mental state

isn’t guaranteed.

Does this latter fact violate what we know or intuit? Given different initial conditio

Swampman and Davidson are actually different temporal slices of the same individ

is important to note: initial conditions cannot be specified merely by means of atemporal

values of parameters. Swampman and Davidson are inherently temporal beings. For 

hysteresis reminds us that the directionality of the evolution of their representationa

tems is important. Directionality is not a magical concept, but rather is simply the not

of where you are coming from in parameter space. So same initial conditions includ

directionality of change at that point in parameter space. The essential tempora

Swampman and Davidson is not surprising given what we know about human categ

tion. If Swampman is the Davidson of tomorrow, he might apply a category differently

the Davidson of today would. As was noted in Chapter 6, many categories are unstab

time.
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If Swampman and Davidson are the same temporal slices of Davidson (this does not

mean that Swampman was copied from Davidson, just that his initial conditions are the

same), they will form the same representations. Notice that their evolutionary history is

irrelevant. Dynamic Systems Behaviorism, however, relies on the notion of neuronal selec-

tion. Doesn’t Swampman imply that neuronal selection is not necessary?

The answer is Yes and No. What Dynamic Systems Behaviorism implies is that a 

anism for self-organization is necessary, and that, in practice, this mechanism is ne

selection. Because computationalism cannot provide a similar mechanism, it is not a

sible theory of mind. However, if by some miracle a lightning strike was both able to m

a microphysical of Davidson (the structural component), and “wind him up” correctly

temporal component), so to speak, then Swampman would have the same represe

as Davidson (assuming he is in the same environment). The past of Swampman is,

case, irrelevant, although his current neural ability to organize and learn is depende

mechanism like neuronal selection (or continued lightning strikes). So, no, neuronal 

tion is not necessary, assuming lightning can have these powers. But, yes, a mechan

neuronal selection is necessary in the absence of magical lightning, and it just so h

that neuronal selection is the mechanism that naturally occurs. It does not threaten D

Systems Behaviorism to imagine that lightning can have the power to form a system

it were formed by neuronal selection. However, lightning strikes cannot give Swam

an evolutionary past, even if they can make him in the image of something that doe

one. If an evolutionary history is necessary, then Swampman is doomed. Rather, evo

ary externalism is doomed, because it requires that Swampman have an evolutiona

tory.
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Correctly created, Swampman has the same representations as his double. But does he

experience what his double experiences? What does Dynamic Systems Behaviorism imply

about the phenomenology of experience?

7.3 A Scientific Foundation for Phenomenology

As Edelman points out, neuroscientists have tended to avoid formulating theories of con-

sciousness, focusing instead on lower-level brain functioning and very specific aspects of

the higher-level. This has been a quite reasonable, divide-and-conquer approach, one that

has yielded astounding results. It is an approach constrained in part by the analytic tools

available. Dynamic systems theory offers the neuroscientist a tool more suited to explain-

ing global aspects of functioning. Efforts to apply dynamic systems theory are still in their

infancy, but are likely to yield similarly important results as their predecessors.

Even granting this possibility, there remains a nagging question about the applicability

of objective techniques to studying consciousness. Can the objective tell us what it is like

to have an experience? Can it explain the phenomenal qualities associated with experi-

ences? What leads to this question is a host of strange aspects of phenomenal conscious-

ness. Unlike physical objects, mental objects are inherently owned; there are no unowned

pains floating about, they are all someone’s pains. Furthermore, all experience is e

ence from a perspective. Without having had this perspective, i.e., without having e

enced something for one’s self, it seems that one cannot have knowledge of what it

to have that experience (the point of Jackson’s example of Mary). Following Tye (1

let’s call these problems the Problem of Ownership and the Problem of Perspectiva

jectivity, respectively.
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It would seem that the mental has some odd properties not attributable to physical

objects. If this is true, how can we explain how the physical causes the mental, since we are

all (well, almost all) physicalists of some sort? Conversely, how is it that the mental can

cause physical behavior? Again following Tye, we will call these problems the Problem of

Mechanism and the Problem of Phenomenal Causation, respectively. The first two prob-

lems set the stage: there is something about the mental that makes it not like the physical.

The second two draw uncomfortable consequences from this disparity: we can’t expla

causal interaction of mental and physical. Although Tye identifies ten problems relat

phenomenal consciousness, I will focus on these four, as they are the most fundam

So it would seem that the study of phenomenal qualities, Phenomenology, is div

from the study of objective cognitive properties, the Cognitive Sciences. This need

so, as van Gelder (1999) has attempted to demonstrate. Aspects of Tye’s Represent

ism (and Dretske’s, insofar as it is similar), can help bridge the gap between the phe

nal and physical. I will now examine those features of Representationalism that ena

to understand the four problems, pointing out how a dynamic systems understanding

resentation takes the place of Tye’s notion of representation. Van Gelder’s illustrat

how dynamic systems theory and phenomenology is one possible step in this genera

tion.

7.3.1 Dynamic Systems Behaviorism as Representationalism

7.3.1.1 What Is the Phenomenal Character of Experience?

Phenomenal Representationalists like Tye and Dretske hold that experience itself is

sentational. What does this mean? It is sometimes assumed that there are phen
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objects, such as afterimages, that the mind views through introspection. Supposedly, one

can direct one’s inner sense toward these objects and discover their qualitative prop

The properties of these objects are the qualitative properties of experience. Phen

Representationalists reject this view. In its place, Tye proposes that phenomenal obj

identified with phenomenal events, so, for example, my pain is just the event of me u

going pain experiences. There is nothing over and above this event, no extra qua

properties of an internally presented object to discover.

In the Representationalist view, sensory modules produce representations of e

and internal objects. The phenomenal character of experience is just the intentional c

of these representations. According to Tye, “[p]henomenal content . . . is not a feat

any of the representations occurring within the sensory modules” (Tye 1995, 136). So wh

is phenomenal content? Tye argues that it is Poised Abstract Nonconceptual Inte

Content. For contents to be poised is 

to be understood as requiring that these contents attach to the (fundamentally) m
output representations of the relevant sensory modules and stand ready and in p
to make a direct impact on the belief/desire system. (Tye 1995, 138)

Contents are abstract if the only objects that enter into these contents are the subjec

experience. They are nonconceptual in the sense that the features of the contents

necessarily the features that figure into the subject’s corresponding concepts. Some

intentional if it can be about something else, without that something else existing.

For the contents to be poised, the outputs of the sensory modules must have a m

relationship to what they are triggered by under optimal conditions. But I have elsew

denied that Tye’s notion of ‘causal covariance under optimal conditions’ is adequa

establishing a mapping. How do we understand the notion of ‘poised’ in terms of Dyn
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Systems Behaviorism? To be poised is to have an attitude toward something. In the case of

sensory perception, it is to form a coherent pattern of activity in the sensory modules with

regard to the environmental conditions. The system parameters that produce this attractor

state are internal and external, and the dynamic equations governing the system determines

their interrelations (a more complex mapping than that envisioned by causal covariance

under optimal conditions).

This would suggest that contents are not abstract. External factors must be present in

order for the sensory modules to move into the attractor state. It would seem that we are

consequently faced with the problem of explaining phantom limb pains. Not so. Remem-

ber, the interrelation of parameters that produces a particular state is extremely complex. A

dynamic system does not necessarily cease to function if a subset of its possible parameters

don’t play a part. It is still possible to move into a particular state with the contributio

only a subset of its components. So, phantom limb pains are possible. The pain s

modules in the brain form coherent patterns of behavior in the absence of nervous a

This would seem to imply that patterns of behavior in the sensory modules are “a

what they were selected for, i.e., that they behave as they would under Normal cond

The dynamic systems approach does eschew evolutionary considerations, but do

thereby throw out temporal explanations in general. Sensory modules organize a

input from the external world, and this organization cannot be explained without this

history of the sensory module is important because, for example, it determines the

tionality of the system’s behavior.

Does the brain-in-a-vat thought-experiment undermine this? The thought-experim

that we place a brain-in-a-vat and feed it sensory inputs just like the ones that are pre
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to a real brain sensing the world. We must, of course, assume that we can read its mind to

provide the sensory input of its desired actions. Its sensory organs organize around these

inputs. What are they representing? Tye’s answer to this thought-experiment is to c

evolutionary history of the brain. But evolutionary history, however, does not deter

fully how the brain is wired up, or even whether it will be wired for a particular funct

Hubel and Wiesel’s (1979) experiments with cats make that clear.1 Real-time adaptation

also determines how the brain-in-the-vat is wired up. In any case, given that Tye ack

edges that Swampman has experiences, he cannot even refer to evolutionary his

establish the content of the brain-in-the-vat’s experiences. We could just pry Swamp

brain out his skull and put it in the vat, and his argument would be moot. Swampman’s

in the vat would presumably have the same experiences as his brain out of the vat

his body.

How does a Dynamic Systems Behaviorist solve this problem? By realizing that is

a problem for Representationalists who insist on a causal covariance model of repre

tion. Just as sensory modules can form patterns of behavior in rare instances withou

nal inputs, they can form these attitudes with a variety of inputs. This does not 

representation arbitrary; there are distinct subsets of external inputs that can produc

ticular attitude, even if there is not a one-to-one mapping between external input an

tude. Note that Swampman’s brain in his body and his brain in a vat are two di

dynamic systems. We are not asking if a duplicate of Swampman can have the sam

riences, but rather whether something neurally like Swampman can have the same 

1.  Hubel and Wiesel deprived kittens of sensory input to their eyes and demonstrated that environmental 
input is necessary for full development and maintenance of these sensory organs.
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ences. This does not mean that experiences supervene on neural states, because in each

case, the attractor associated with the attitude is a result of the entire system.

7.3.1.2 How Representationalism Helps Solve the Problems of Consciousness

Attitudes, as envisioned in Dynamic Systems Behaviorism, are patterns of behavior, not

physical objects themselves. They are states of a system. As such, they belong to a system,

they are particular to the system that gives rise to them. In this sense, they are owned.

Having a particular experience therefore means being that particular system. Thus, the

Problem of Ownership (and the privacy of experience) does not affect Dynamic Systems

Behaviorism.

This directly mirrors the arguments made by Tye as to why the Representationalist

notion of experience is not affected by the Problem of Ownership. Representations are

events, and events belong to systems having them. The difference between Tye’s re

tationalism and Dynamic Systems Behaviorism in this context lies in how the even

conceived. 

Tye’s solution to the Problem of Perspectival Subjectivity, on the other hand, 

require accepting Tye’s argument that awareness of phenomenal quality is ac

through application of phenomenal concepts. There are two kinds of phenomenal con

predicative and indexical. Predicative phenomenal concepts correspond to the featu

conceive our experiences to be of (particular colors, shapes, etc.). Indexical concepts

us to single out particular features represented in our experiences contemporaneous

the experience. Together, they enable us to conceive of an experience as an exper

this shade of blue. Understanding phenomenal content requires applying these conce
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experience, which means taking a particular perspective toward experience. Perspectival

subjectivity is nothing more than this. In the language of Dynamic Systems Behaviorism,

the perspectival subjectivity of experience is the fact that understanding a phenomenal state

is a system’s taking the appropriate attitude toward it.

Once the spookiness of consciousness is gone, the mechanisms for causal inte

become evident. For the dynamic systems behaviorist, if phenomenal character is re

tational, then phenomenal experience is simply the activity of the sensory attitudinasys-

tems. These systems are themselves causally efficacious through their contribution to

attitudinal systems directed towards them (the correlate to Tye’s notion of applying

nomenal concepts). 

This, of course, is just a rough sketch of Tye’s sketch of a solution to the proble

consciousness. However, if Tye is right that Representationalism can explain the pro

of consciousness, then it would seem that Dynamic Systems Behaviorism can as we

without the use of vague notions of information.

7.4 Symbols as Social Constructs

Humans display a wide range of behavior that can be classified as symbol manipu

From language use, to mathematics, to painting and sculpture, the use of symbols

expression of thoughts distinguishes humans from other species. Computationalists 

human symbol manipulation in terms of symbol manipulation in the mind/brain, castin

external use of symbols back into the psychological structures that lead to this ex

behavior. This move is tempting for its simplicity. The existence of external rule-follow
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behavior is explained in terms of rules in the mind brain; symbols in the world are place-

markers for symbols in the mind.

DSB rejects this projection of external symbolic behavior back into the mind. Instead,

symbols are conceived as objects only for a community. They exist only within a commu-

nity capable of interpreting them. A speech act acts as a symbol for a thought only insofar

as others are capable of understanding it as such. Speech acts and other symbols do not cap-

ture the nature of a thought—they are not external expressions of the symbols that 

in the mind. Symbols act as facilitators for enabling other members of a commun

approximate the thought processes of the symbol producer. Symbols are necessary

fiers for the act of conveying what one is thinking, and because they are simplifiers

do not fully capture the nature of thought.

7.5 Conclusion: Representation and Information

The information-processing model of mind attempts to decompose thoughts into prim

elements according to their syntactic structure and assign a semantic interpretation t

syntactic primitives. This approach fails to explain the representational capabilities o

organisms and to provide a foundation for designing adaptive artificial cognitive agen

alternative understanding of representational capacities in real organisms has emerg

dynamic systems theoretical accounts of organisms’ brain/body interactions with

environments.

Kelso (1997) has outlined one possible interpretation of the semantic featur

dynamic systems. He views the order parameters that emerge through the inte

between brain/body and environment as inherently meaningful because they captu
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relations between the two domains. Order parameters describe the manner in which pat-

terns form in brain/body behavior and how these patterns correlate with the environment.

Kelso argues that these order parameters are meaningful to the organism, that they are

meaningful bits of information about its coordinative relations to its environment. What

this suggests is that the organism has access to the order parameters, that it analyzes its own

dynamic systems and distills these order parameters from its understanding of how it is

itself behaving. 

Unlike a symbol, which has no inherent connection to what it represents and therefore

requires ‘grounding’, an order parameter is intrinsically meaningful to the observer an

ing it because it captures the relations between domains. But like a symbol, it can be

ingful only to an observer who identifies its role within a system. By suggesting tha

order parameter itself is meaningful to the system, Kelso duplicates computationa

error of identifying a representation of a system with the system’s representations

meaningfulness of order parameters indicates not that these parameters are meani

the system, but that the processes which they describe are themselves meaningfu

system. Order parameters capture the relations between domains—environment, bo

brain—because the systems they describe are composed of these domains.

DSB is therefore neither a radically environmentalist nor a methodologically solips

theory of mind. Mind is instead a unity of environment, body, and brain in that the 

organization of the neural elements responsible for cognition only occur within a

system including the body and its environment. Mental states are behavioral state

brain/body within a particular environment, and it is necessary to explain the contrib

of the environment in order to explain the nature of these states. For what are cons
318
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‘abstract’ mental states, the environment consists largely of the behavior of neura

systems.

This approach captures what Andy Clark (1997) is attempting with his augmentat

symbol systems: it brings the environment into the system. But Clark also wants to b

to informationally decompose the system, and so requires that all representations b

direct perceptual representations be symbolic in nature. It avoids, however, the nec

(for Clark), and unexplained, link between the symbolic and dynamic systems.

Representations are not bits of information gathered from the environment, stored

brain, and reproduced in thought. They are behavioral attitudes taken through inter

of the environment, neural maps, and internal value systems, and reproduced throug

ronmental triggers and internal controls. Attitudes are ‘stored’ by modification of ne

chemistry to make the emergence of similar behavioral patterns likely in the appro

contexts. Behavioral patterns are not ‘codes’ for interpretative neural systems to d

and act upon. In some contexts, they are control parameters similar to the electrical 

applied to active elements in the gas laser: they drive the process of self-organiza

other neural ensembles external to their particular module. In other cases, they beco

of a larger system and become enslaved to its higher-order behavior. The symbol 

interpreter is removed from the machine, and with them, the homunculus.

Any system can be analyzed in terms of Shannon information flow. This fact shou

lead to the conclusion that semantic information is coextensive with Shannon inform

It also does not imply that every system is conscious or has experiences. Although

dynamic systems can be analyzed in terms of information flow, their role is not of info

tion processors.
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The computationalist information-processing model of mind seeks to explain the oper-

ations of the mind by casting the external symbolic behavior of language use back into the

mind. Because of this move, it offers a more compelling explanation of the bases of lan-

guage behavior than connectionist or dynamic systems theories. And because of this move,

it cannot explain how non-linguistic representations arise. Dynamic systems theorists and

neural selectionists build from perceptual processes upward, and so are able to offer an

explanation of the origin of non-linguistic representations, but have yet to fill out the details

on how overtly symbolic behavior is produced. Linguistic behavior stands as the great chal-

lenge to any dynamic systems account of cognition.
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	Introduction
	If there is any view that unites Dynamic Systems Behaviorism the disparate fields gathered under ...
	This theme has been popularly embodied in the computer metaphor of mind. While this metaphor is n...
	This dissertation takes direct aim at the notion that the mind/brain ought to be studied as if it...
	The information processing approach is implemented by cognitive scientists primarily along comput...
	Even if computationalism enables researchers to analyze how information is expressed and used in ...
	To take computationalism’s place, I will sketch an evolutionary-ecological theory of the mind/bra...
	Whereas Edelman’s TNGS offers an account of the neural principles that drive the organization of ...
	Among philosophers who have taken issue with the computational theory of mind and the information...
	Timothy van Gelder’s exposition of a dynamic systems alternative to computationalism is both the ...
	Chapter 1 examines the information processing model and various attempts to develop a theory of s...
	Chapter 2 analyzes computationalism and its numerous incarnations to determine whether they can e...
	Chapter 3 focuses on connectionist claims to have overcome the deficiencies in traditional comput...
	Chapter 4 presents the specific and general frame problems, as well as an argument for how they a...
	Chapter 5 examines externalist alternatives to the computationalist understanding of information:...
	Chapter 6 reintroduces the dynamic systems critique of computationalism and explains how it offer...
	Chapter 7 provides a sketch of a theory of mind, Dynamic Systems Behaviorism, and demonstrates ho...
	What do DNA, the spiking of neurons, newspaper reports, and computer databases all have in common...
	More than any other general perspective on cognition, the idea that the mind is an information pr...
	There is a commonsense understanding of information that we all share. Information is a fact or s...
	At the opposite extreme is Claude Shannon’s (1949) definition of information, a mathematical form...
	Neither of these meanings of information expresses precisely what the cognitive scientist intends...
	In this chapter, I will show how the few efforts at explaining the nature of information and info...
	1.1 What Is Information?
	The literature of cognitive science provides a number of possible definitions of the term ‘inform...
	1. Information is a measure of the novelty of a message; this is found more in accounts in Inform...
	2. Information is a causal/structural relationship between micro- and macrostates. Eigen and his ...
	3. Information is the content of representation (Sterelny 1990).
	4. Information is a fact or set of facts about the world. This corresponds roughly to the common-...
	5. Information is a normal causal relationship between the way the world is, and what goes on in ...
	6. Information is a veridicality relationship between object and representation, with veridicalit...
	Perhaps the most unenlightening definition of information is that of Cummins, who, in defining an...
	Either Cummins has merely stated the truism that information processing is the movement from one ...
	The common, implicit definition of information seems to be as stated in 4. Pieces of information ...
	This informal definition of information gives rise to significant problems. It leaves the questio...
	In short, we are asking whether the quantity of the semantic content of a particular message is b...
	Even if there are limitations that can be specified in a principled manner, if we identify ‘infor...
	In his discussion of the computational theory of mind, Kim Sterelny (1990) adopted a three-level ...
	Attacking information-processing models of mind is hardly a new endeavor. The philosopher John Se...
	Similarly,
	Information and syntax are observer relative properties, and thus not inherent in the physics of ...

	1.2 Shannon Information Theory
	Just what constitutes information is the source of a great amount of confusion, and not merely am...
	Claude Shannon inaugurated what is now referred to as Shannon information theory (or just informa...
	Equation 1-1. Entropy

	where K is a positive constant representing the unit of measure, pi is the probability of event i...
	As the molecular Darwinist Bernd-Olaf Küppers (1990) has pointed out, the Shannon definition of i...
	Shannon Information Theory offers the cognitive scientist little in the way of explaining the ori...

	1.3 Biological Information
	It has become standard parlance to speak of DNA and genes as if they were books or blueprints con...
	Molecular Darwinism is the theory that “biological information has arisen by the selective self-o...
	Following Weizsäcker (1971), Küppers holds that semantic information is information that is ‘unde...
	Molecular Darwinists understand the pragmatic aspect of genetic information to be as follows:
	The pragmatic aspect of neuronal information could be its capacity to alter the structure of the ...
	There are a number of departures from the common sense notion of information in the molecular Dar...
	Folk psychology also admits of information that has no effect on its recipient. Redundant informa...
	So which understanding of information should prevail? I will argue that neither position explains...

	1.4 Why Dretske’s Theory of Information Fails to Provide a Foundation for Cognitive Science
	Although lacking a formal definition of information, and, hence, a definition of what it means to...
	In Knowledge and the Flow of Information (1981), Fred Dretske attempted to develop a theory of in...
	He nonetheless formalizes his notion of information in terms of the Shannon functions for novelty...
	Dretske stipulates that the recipient of the message need not know how many possibilities were re...
	This sets the stage for Dretske’s exposition of the semantic level of information. Dretske places...
	Condition (A) sets a lower bound on the amount of information a signal can carry if it is to carr...
	Drestke offers the following definition of informational content to meet all three conditions:
	The variable k quantifies what the recipient of a message already knows. In other words, the reci...
	What Dretske is trying to achieve with these definitions is to establish a relationship between i...
	Dretske insists that the conditional probability of an event given the message must be 1 if the m...
	So what is the upshot of Dretske’s view of information? It is an account of the difference that i...
	Here Dretske is simply wrong in his contention that neurophysiological data cannot explain the ch...
	A further problem with Dretske’s explanation of the role of information in cognition is his insis...
	Dretske’s account of the nature of information fails to establish a link between the signaling fo...

	1.5 A Misapplied Concept: Sayre’s Use of Mutual Information to Explain Semantic Information
	Like Dretske, Sayre attempts to provide an account of semantic information by extending concepts ...
	The mutual information measure of an information channel is defined as the difference between the...
	Sayre uses the human visual system to elucidate how mutual information underlies semanticity and ...
	Increasing the reliability of a channel results in increasing the degree of identity between repr...
	Sayre’s account is vulnerable for this very direct realism. The visual system, by selecting aspec...
	Finally, even Sayre's reliance on evolutionary theory to somehow legitimize his thesis is misplac...

	1.6 Confusing Symbols, Representations, and Information
	Efforts at explaining intelligence by computationalists have focused largely on the nature of sym...
	‘The symbol-grounding problem’ is Stevan Harnad's term for the collection of dilemmas that are im...
	Harnad’s solution is to link symbols to the world via two forms of what Harnad considers to be no...
	Simply naming categorical representations is not sufficient to elevate them to symbols, because s...
	Harnad acknowledges one major difficulty with his account, namely that the mechanisms for produci...
	What is missing from Harnad’s and the symbolic account is not so much how categorical representat...
	Cognitive scientists typically view the ‘aboutness’ of representations as a function of their map...

	1.7 Problems with the Information-Processing Model of Mind
	Regardless of the problems with cognitive science’s methodology, denying that the mind/ brain is ...
	John Searle has argued that there is no information inherent in the physics of the brain (Searle ...
	1. The sub-neuronal level: Might information arise at the level of mitochondria or other constitu...
	2. The neuronal level: Is the action potential of a neuron a transformation of information? Is it...
	3. The neural population/map level: Are neural maps representations of the external world?
	4. The gross structure level: Does representation arise within, for example, the hippocampus as a...
	5. The whole brain level: Is the activity of a portion of the brain a representation only within ...
	6. The embodied brain level: Must the context be extended to the brain+body for there to be repre...
	7. The environmental level: Must the embodied brain be considered in its environmental context fo...
	Alternative characterizations of the possible levels of the mind/brain have, of course, been prop...
	The level of physical architecture is simply the structured guts of the machine, whether this is ...
	Roger Penrose (1989) has made a case for assigning the origins of consciousness to the subneurona...
	The neuronal level is a more likely candidate for the origin of information, though this possibil...
	Yet, connectionism's insistence on a holistic approach to neural systems, rather than the traditi...
	Unfortunately, connectionism's solution to the neuronal-level homunculus problem is only a tempor...
	Connectionist systems are level-4 systems, although they are not truly neural maps or populations...
	It is tempting to view the release of neurotransmitters as a form of information transfer, and to...
	At this point, the cognitive science de facto position that information is akin to representation...
	Even adopting such an absurd position would not save cognitive science's account of information. ...
	If there ever was a ghost-in-the-machine explanation of cognition, it is the information- process...
	The question is not how the homunculus disappears, as it is generally agreed that molecules are n...

	1.8 Theories of Syntactic Information Do Not Provide a Basis for a Theory of Semantic Information
	Cognitive scientists regularly speak of sentences, utterances, and signals ‘carrying information,...
	Dretske’s causal account places too stringent of a restriction on what signals qualify as carryin...
	Sayre’s use of the concept of Shannon mutual information as a measure of reliability to explain t...
	The molecular Darwinist approach is simply to cast the syntactic aspects of signals into biologic...
	The failure to provide a theory of semantic information is of no little consequence for cognitive...
	In the next chapter, I turn to how information processing plays a role in the development of comp...

	2.1 Information, Representation, and the Computer Metaphor
	If one were to summarize the disparate efforts of cognitive scientists to understand cognition an...
	2.1.1 The Nature of Representations
	So what is meant when a cognitive scientist says X is a representation? A representation is gener...
	Neuroscientists often point to the motor and sensory homunculi as examples of relatively straight...
	Cognitive psychology is essentially the study of representations as defined above. The debate bet...
	This is not to say that some cognitive scientists would not object to this definition of represen...
	Fodor identifies representations with propositional attitudes because he is a Realist about the l...

	2.1.2 How Information Serves as the Notion of Representation for the Computer Metaphor
	Regardless of the specific form of the representational theory, cognitive scientists have implici...
	Even the evolution of the mind/brain is compared to the design and construction of a computer. Ex...
	The influence of the information-processing formula is greater than merely suggesting metaphors. ...


	2.2 Algorithms and the Computer Metaphor
	2.2.1 Dennett's Mistaken Concept of ‘Algorithm’
	Cognitive scientists do not view the mind as merely a collection of representations. These repres...
	So an algorithm is a formal process for producing some result, or at least that tends to produce ...
	There are a number of problems with Dennett's description of algorithms. First, it is unclear wha...
	Second, what does it mean for there to be a misstep in an algorithmic process in nature? For exam...
	Finally, just what in nature doesn't qualify as an algorithm? According to Dennett, processes nee...
	So it would seem that a process could make use of randomness as well as producing it, and still q...

	2.2.2 The Concept of ‘Algorithm’ as Found in Computer Science
	It is not objectionable if Dennett simply wants to carve out his own notion of algorithms, but it...
	So when Edelman criticizes functionalism for its insistence on explaining the mind/brain in terms...
	Dennett has expanded the definition of algorithm to a degree where it means little to say that a ...
	Dennett and the theorists of algorithmic information mean something radically different from one ...
	Here, an algorithm is not merely a substrate neutral method for doing something; rather, it is a ...
	We could carry our abstraction of the bucket brigade system one step further and introduce simula...
	This distinction between algorithms generally and information processing algorithms is essential ...
	1. brain processes are algorithms,
	2. computers can instantiate algorithms,
	3. therefore computers can instantiate the same algorithms as brain processes,
	is a mere equivocation. What Edelman has done is put his finger on what bothers Searle about cogn...


	2.3 An Information-Processing Model of Mind: Computationalism and its Varieties
	Dennett's mistake is a common one. It is largely due to cognitive scientists harboring the unques...
	While it is important to point out that computationalism-the theory that the states of mind/brain...
	2.3.1 Mainstream Computationalism
	So what is computation, and what does it mean to have a computationalist perspective of cognition...
	More precisely, a computational algorithm is a procedure to produce the ordered pairs that define...
	A computational theory of mind is one that holds that the mind/brain produces representations as ...

	2.3.2 Weakened Computationalism: Computationalism as the Computability of Cognition
	William Rapaport (1998) has developed a variation of computationalism that allows for the possibi...
	So too could the mind's functions be computable but not actual computations. If this is true, Rap...
	This approach would conflate descriptions of behavior with the behavior being modeled, except tha...
	The two issues here are whether the intermediate process from input to output are irrelevant and ...
	Perhaps dreams are indeed a bad example. A computer that could think but not dream would still qu...
	More perplexing is the notion that what gets you from input to output is irrelevant. Rapaport cit...
	Rapaport holds this view because he believes that the output of computation and the output of hum...
	2.3.2.1 Why the Chinese Room Beats the Korean Professor
	With his Chinese Room thought-experiment, John Searle (1980) laid bare the intuitions of both sid...
	To counter this intuition, Rapaport proposes the Korean-Room argument (Rapaport 1995). It runs as...
	The analogy between the Chinese room and this Korean professor is not that the room understands C...
	With this thought-experiment, Rapaport has exploited a weakness in the Chinese room that needn’t ...
	What about Searle-in-the-room+book? Searle anticipates this by allowing that Searle- in-the-room ...
	An anonymous reviewer of Rapaport’s draft article (2001) pointed out that Searle would not know w...
	The reason Rapaport believes Searle-on-the-island could communicate with his Friday is that he ha...
	No doubt that given enough time and appropriate feedback (such as someone slipping translations u...
	This is an imperfect example, because Searlese is a bit too weak. It should also map to basic ope...
	Although Rapaport’s thought-experiment fails to demonstrate that the Chinese room understands Chi...

	2.3.2.2 Taking Computationalism to its Logical Conclusion: Syntactic Semantics
	In “Understanding understanding: syntactic semantics and computational cognition” (1995), Rapapor...
	So what fixes the internal meaning of a marker? Its location in the cognitive system’s semantic n...
	The first approach to converting semantics into syntax takes as its starting point a definition o...
	The second path to syntactic semantics is the need to terminate the infinite regress of semantic ...

	2.3.2.3 Why the Syntactic Move Does Not Work
	At first glance, Rapaport appears to be advocating a form of reductionism similar to the reductio...
	This is precisely the move that methodological solipsists must make to address the question of wh...
	One difficulty for methodological solipsists is how to explain what makes an internal representat...
	This is not to be obtuse or ask the impossible. Granted that neuroscientists have yet to adequate...

	2.3.2.4 Damasio’s Theory of Time-Locked Multiregional Retroactivation as a Biological Model for S...
	Rapaport (1996) offers Damasio’s theory (1989) of time-locked multiregional retroactivation as a ...
	Damasio’s theory is a challenge to the conventional view of the time that there is a unidirection...
	The architecture proposed by Damasio consists of four layers:
	Experience is the time-locked activation of the fragmentary perceptuomotor records in (1), which ...
	In what way does Rapaport see Damasio’s theory as compatible with computationalism as he envision...
	In a traditional SNePS-like network, M4 represents a pink ice cube by virtue of the connections i...
	There are a number of other ways in which Damasio’s architecture differs from that proposed by Ra...
	What of the claim that what Damasio is describing is a form of syntax realizing semantics? Syntax...
	Dynamic systems allow for combinatoric arrangements without the need for explicit codes describin...
	he is neither endorsing the view that representations are combinatorial codes nor the view that r...
	Finally, there is Rapaport’s contention that Damasio’s theory fits well with his own Kantian “rep...
	Here, we have the noumena dictating how they are represented, with neurobiological constraints be...

	2.3.2.5 Computational ‘Understanding’ Is not Understanding
	What implications does this analysis of the differences between Damasio’s theory and Rapaport’s c...
	Thus, we must answer the first question, whether computational systems can produce the same input...
	The second question, whether the intermediary between input and output is moot, is itself almost ...


	2.3.3 Computation as an Abstract Description of Causal Relations
	A third form of computationalism can be found in the work of David Chalmers. Rather than identify...
	According to Chalmers’s definition of a computational system, every physical system implements so...
	Chalmers's account is computationalism's most severely flawed variety. First, it is plainly false...
	Second, Chalmers has failed to demonstrate that the mind/brain has an abstract causal topology. U...
	Third, Chalmers's formulation of computationalism is inapplicable to plastic systems such as the ...
	Fourth, the mapping of causal relations to formal states of a computation is itself a computable ...
	Finally, Chalmers's version of computationalism is highly susceptible to criticisms from proponen...

	2.3.4 Computationalism as Information Processing
	Chalmers has tried to avoid the question of what computation contributes to a causal system by de...
	Mainstream computationalists have identified the type of these special computations as informatio...
	Mainstream computationalism finds expression in both neurobiology and cognitive psychology. Since...


	2.4 A Step in the Right Direction: The Dynamical Systems Critique of Computationalism
	There are several well-known challenges to computationalism, among them the recalcitrant strains ...
	2.4.1 Van Gelder’s Example of Dynamic vs. Computational Systems
	To illustrate the difference between a computational system and a dynamical system, van Gelder de...
	1. Measure the speed of the flywheel.
	2. Compare the actual speed against the desired speed.
	3. If there is no discrepancy, return to step 1. Otherwise,
	A measure the current steam pressure;
	B calculate the desired alteration in steam pressure;
	C calculate the necessary throttle valve adjustment.
	4 Make the throttle valve adjustment.
	It can also be accomplished with James Watt's centrifugal governor, a device that does not make u...
	Representations in the case of the computational governor are the measurements of the steam press...
	Because the centrifugal governor does not have manipulable representations, the hallmark of compu...
	The homuncularity constraint of a computational system is also often referred to as modularity. B...

	2.4.2 Connecting Connectionism and the Dynamic Systems Approach
	Van Gelder accepts connectionism to be a subset of the dynamical systems approach. In doing so, h...
	However, this distinction is unprincipled. Numerical computation is symbolic computation. Indeed,...
	Perhaps van Gelder is suggesting that the nonlinear differential equations used in connectionist ...
	The attraction of connectionist systems to van Gelder and others lies in their use of vectors and...
	The homuncularity constraint on computational versus connectionist systems is another unprinciple...
	As for van Gelder's arguments concerning the nature of representational versus nonrepresentationa...

	2.4.3 Why van Gelder’s Example is Not Enough
	By seeking to place connectionism in the domain of dynamical systems approaches to the nature of ...
	In one sense, van Gelder's use of the two types of governors as a means of distinguishing represe...
	That principled distinction is between information-processing and noninformation-processing syste...


	2.5 Refining the Dynamical Systems Critique
	Although van Gelder has blunted the force of his critique of computationalism through his efforts...
	If a cognitive system does not possess simple, manipulable representations, then its complex info...
	Kelso's formulation is susceptible to a Searlean form of criticism: order parameters are not intr...
	This is all very vague, and will remain so until we attempt to describe some of the relations of ...
	Physicists have long marvelled at the astonishing capacity of mathematical/computational models t...
	Daniel Dennett and Richard Dawkins have each made this question seem unnecessary by characterizin...
	So is there any reason to believe that natural selection favors one approach over another? Yes, b...
	The differences in mechanism between computational and dynamical systems responsible for this dif...
	The proponents of the dynamical systems approach to cognition must admit that the teleonomic or p...

	2.6 Problems with Clark’s Strategy of Partial Programs
	In his recent book Being There: Putting Brain, Body and World Together Again (1997), Andy Clark c...
	First, Clark suggests that more emphasis be placed on what he calls action-oriented representatio...
	The second way in which computationalists can refine their theories is by de-emphasizing the pict...
	In making these concessions, Clark has bitten off more than computationalism can chew. Rather tha...
	Clark's response to the dynamical systems theorist is weakest when he considers the constraint of...

	2.7 The Uses and Limits of Computationalism
	It is impossible to limit the dynamical systems critique of computationalism to symbolic AI and l...
	I do not endeavor to solve this apparent paradox at this juncture, leaving it for the final chapt...
	The successful modeling of single cells and maps of cells is supposed to tell us the place of the...

	2.8 Computationalism’s Failure to Explain the Nature of Representation
	According to computationalists, minds carry out information-processing operations by carrying out...
	Just as semantic information could not be understood in terms of syntactic information, so too th...
	Dynamic systems theory has emerged as an alternative to computationalism, and not merely a comple...
	The reemergence of artificial neural network research during the 1980s gave rise to a new philoso...
	In this chapter, I will examine claims that connectionism is a significant departure from traditi...

	3.1 What is Connectionism?
	Connectionist networks are collections of simple processing units working in parallel to transfor...
	Hidden-layered networks have important properties that make them desirable for use in connectioni...
	Not all networks, whether multi-layered or not, count as connectionist networks. An important con...
	Connectionism can be defined in part by the departures it takes from symbolic AI. The following i...
	1. The brain is a parallel, rather than a sequential, processor. While symbolic AI tends to view ...
	2. Symbolic AI models cannot match the speed at which the brain processes, despite the relatively...
	3. Connectionists contend that the memory of their models is content addressable, rather than loc...
	4. Connectionists complain of traditional AI's dependence on Von Neumann style architecture. Agai...
	5. Connectionists such as Churchland and Sejnowski reject the hardware/software distinction regar...
	6. Symbolic AI models only a small fraction of mental life, namely higher cognitive functioning. ...
	7. The sentence/logic model of cognition employed by symbolic AI is clearly not a true theory of ...
	Thus, connectionist criticism of symbolic AI focuses on three areas: the neural plausibility of s...

	3.2 A Brief Overview of ANNs
	A host of neural network paradigms have sprung up since the work of Kohonen, Werbos, Rumelhart, S...
	3.2.1 Unsupervised Learning: The Kohonen Neural Network
	The Kohonen neural network, also known as the Self-Organizing Feature Map, is a common example of...
	The Kohonen self-organizing feature map has been used for a wide variety of applications, from ro...

	3.2.2 Supervised Learning: The Multi-layer Perceptron
	The most popular supervised learning technique, in fact the most widely used ANN technique, is le...
	Backpropagation of error forms the basis of most of connectionism's successes, and backprop nets ...
	In evaluating the criticisms against symbolic AI, as well as the positive case for connectionist ...


	3.3 The Proper Treatment of Connectionism
	According to Smolensky’s view, connectionism is a radical departure from symbolic AI by virtue of...
	While symbolic systems are useful for modeling such explicit rule-following behavior, the connect...
	Smolensky argues that the reason symbolic AI systems perform poorly as models of intuitive proces...
	Connectionists also make much of the similarity between their systems and neural architecture, in...

	3.4 Why Connectionism Fails to Deliver: Neural Implausibility and Its Relevance
	While vaguely resembling biological neural networks (BNNS), ANNs are still wildly implausible as ...
	3.4.1 Artificial Neural Networks Don’t Really Resemble Biological Neural Networks
	An accurate model of a single neuron and its communication with other cells would require a “vast...
	But the only appropriate answer to these questions at this point in time is that no one knows for...
	For a time, neuroscientists considered the simple and complex cells in the visual cortex to be fe...
	The form of communication between neurons in connectionist systems diverges significantly from th...
	Nor is there significant resemblance at the network level. There is no known analog in BNNs to th...
	Even if such an analog were to exist, the dynamics of modifying biological neural weights would d...
	The dynamics of connectionist systems therefore show no significant similarity to the dynamics of...
	In addition to the biological implausibility of connectionism, there is the underlying assumption...


	3.5 Symbols and Representations: The Subsymbolic Fallacy
	Whereas Smolensky’s connectionism identifies the distributed nature of representations in connect...
	These distinctions are meant to answer a simple objection to the symbol-nonsymbol distinction. Th...
	The argument for the noncomposability of analog signals seems to rest, however, on the assumption...
	This contradicts Smolensky’s view that implicit rules may be hardwired into a system (be part of ...
	What is missing from connectionist accounts is a clear statement whether analog systems are truly...
	The symbol-subsymbol distinction is not the same as the symbol-nonsymbol distinction, relying on ...
	So why does it matter whether representations arise from subsymbolic processes rather than being ...
	The subsymbolic hypothesis, as stated by Smolensky, is that connectionist systems do not “admit a...
	This kind of network is an extreme example, one that would never be used even if a look-up table ...
	If the function of a weight or hidden neuron can be discovered, then this weight or neuron can se...
	So there are two problems with Smolensky's account. Smolensky acknowledges that a complete, forma...
	Then Touretzky and Pomerleau go on to endorse the PTC view of hidden unit activity:
	Either we must conclude that symbols such as LANE-STRIPE-DETECTED are really subconceptual, or th...
	Second, the claim that the network level does not admit of a conceptual level analysis is questio...

	3.6 Why the Causal Efficacy of Representational Structure Is Not a Form of Exceptionalism
	David Chalmers has argued that connectionist systems possess an internalist semantics lacking in ...
	According to Chalmers, connectionist systems possess internalist semantics because the structure ...
	Searle (1980) contends in his Chinese Room argument that syntactic elements do not bear semantics...
	Being embedded in a system, that is, having relations to other tokens, does not suddenly imbue an...
	If we accept Chalmers’s account of connectionism, namely that subconceptual elements do not bear ...
	First, it is not entirely true that the activation patterns of a trained-up network cannot be alt...
	Second, it is deceptive to characterize the relation between gross network behavior and neuron be...
	So even if the output of a connectionist system is not arbitrary because it is determined by the ...
	Thus, connectionist systems do not have a special internalist semanticity that symbol systems do ...

	3.7 Connectionist Systems Don’t Really Possess External Semantics
	I have previously argued that, contrary to connectionist claims, the ‘subconceptual’ aspects of c...
	The case for connectionist exceptionalism with regard to externalist semantics derives from the a...
	The ability of connectionist systems to automatically form representations of data and to general...
	Even if we were to concede semanticity to connectionist representations, this would in no way sav...

	3.8 Why Connectionism Is Not an Implementation of Heideggerian Principles
	Hubert and Stuart Dreyfus have argued that connectionism is a novel development in cognitive scie...
	At the same time, a movement to model the brain's functioning, led by Frank Rosenblatt, had begun...
	For Dreyfus and Dreyfus, this was not merely a clash between computer scientists trying to get fu...
	For the Dreyfuses, the foundering of symbolic AI on the difficulties faced in constructing adequa...
	Still, Dreyfus and Dreyfus view connectionism as not quite holistic enough. Connectionists, in th...
	Dreyfus and Dreyfus have misconstrued the implications of connectionism. If a move toward holism ...
	Dreyfus and Dreyfus are correct that ANNs do not require an analysis of their hidden nodes, but a...
	An example of the analytical usefulness of ANNs is the work on object position location in monkey...

	3.9 Why Connectionism Doesn’t Really Aid Cognitive Psychology
	Over the past decade, many cognitive psychologists have turned to connectionism to provide the co...
	3.9.1 Schyns' Work on the Nature of Concept Acquisition as Prototype Formation
	Cognitive psychologists have recently debated the merits of two models of concept acquisition and...
	Schyns separates the concept-acquisition problem into two tasks: categorization and naming. The S...
	Inputs are generated by randomly altering 1-10 of the pixels lying around the contour of the shap...
	The network of 10x10 neurons was then trained on a large sample of these individual instances. As...
	Schyns's network shows a variety of the characteristics of categorization predicted by prototype ...
	A further experiment by Schyns was designed to show how hierarchical networks can handle subcateg...
	Schyns has developed a model which, he argues, correlates well with data about concept-acquisitio...

	3.9.2 The Invisible Hand of the Researcher: A Critique of Schyns' Model
	That a SOFM would bear resemblances to the categorization behavior predicted by prototype theory ...
	The use of a SSB network for naming is similarly spurious. The SSB autoassociator learns through ...
	Schyns's accomplishment is to use a prototype-extracting neural network to extract prototypes. Th...
	The human puppeteer emerges first in the presentation of the input. Humans are capable of develop...
	Human intervention continues with the interpretation of the SOFM's responses to each input. Once ...

	3.9.3 How Connectionism Hinders Cognitive Psychology
	Connectionism provides the cognitive modeler with powerful tools (too powerful compared to actual...
	One reason that a connectionist might give is that we do not fully know what functions the human ...
	Two possible reasons for this failure are that the brain might not be executing computational fun...
	To model dynamically changing functions requires a system to be capable of both executing each of...
	While connectionists eschew most extreme forms of modular models, the systems they build are none...

	3.9.4 Closing a Gap: The Status of Connectionist NLP
	If connectionist systems are to be considered the cure for the computationalist's problems, they ...
	Efforts at symbol grounding illustrate connectionist NLP’s reliance on traditional AI techniques,...
	Another connectionist method of NLP that does not simply mimic symbolic AI approaches is Riisto M...
	Miikkulainen (1997) emphasizes the point that his system is not merely a connectionist implementa...
	1. Subsymbolic representations are continuously valued.
	2. Concepts have similar representations in subsymbolic systems; the ‘marker’ for a concept is no...
	3. Subsymbolic representations are holographic: any part of a representation can be used to recon...
	4. Separate pieces of information are superimposed on the same finite hardware.
	The final distinction, known as the superposition of information, is not to be confused with the ...
	Although Miikkulainen’s system has shown significant success in processing scripts, he admits tha...
	Advances in connectionist NLP, including Miikkulainen’s, serve to further establish the (empirica...


	3.10 Connectionist Learning in ALVINN: An Illustration of the Gap between Human and Artificial Ne...
	What is most revealing about ALVINN is not that it can mimic the human behavior of driving a car,...
	These limitations are clearly not present in humans. A human does not need to have trained on swe...
	ALVINN is not alone in having to learn from input prepared in an extraordinary manner. All comput...

	3.11 Computationalism Revisited: Impoverished Learning
	One of the most astonishing feats of human cognition is the ability of children to learn language...
	Artists do not merely mirror the natural world, nor simply transform their subject according to p...

	3.12 Why Connectionist Systems Are the Wrong Kind of Dynamic Systems
	In chapter 2, I noted the incongruity of van Gelder advocating a dynamic systems alternative to c...
	What distinguishes a connectionist system as a dynamic system is that the state of the system can...
	Again, no distinction is made, either by van Gelder or by Smolensky, between connectionist system...
	Similarly, connectionist nets on digital computers do not evolve continuous variables, but discre...
	Of course, digital approximations of continuous systems are of extreme value to engineers and sci...
	The success of the Touretzky-Redish model does little, however, to bolster van Gelder's case that...

	3.13 Connectionism’s Contribution: Superposition of Information
	Much has been made by connectionists of the distributed nature of representations in connectionis...
	The superposition of information over distributed structures distinguishes ANNs from traditional ...

	3.14 Connectionism Does Not Remedy Computationalism’s Problems
	Connectionism is often represented as a radical break from computationalism, one that incorporate...
	Connectionist systems are only slightly more neurally plausible than traditional AI systems. This...
	What remains of the analogical argument of connectionists is the distributed nature of neural net...
	In itself, the capacity for superposition of information, however, does not indicate how semantic...
	Searle’s Chinese Room argument has exposed AI's inability to produce semantics from syntax. And w...

	4.1 What Is the Original Frame Problem?
	Each of these problems has been confused with what McCarthy and Hayes (1969) identified as the fr...
	The frame problem arises when one tries to represent change with a time-related logic. The situat...
	Hayes has attempted to guard the notion of the frame problem from efforts to expand it to the pro...

	4.2 How the Frame Problem Has Evolved: The General Frame Problem
	Much to chagrin of its original framers (Hayes 1987), the frame problem has since metastasized in...
	The expanded frame problem is generally conceived to be a question of the form, not content, of r...
	Janlert paradoxically argues that the frame problem is a problem not of what data-structures and ...
	It is Janlert’s quoted formulation, and not his tying of the form of representations to the metap...
	If we are to assume Church’s thesis, it is unclear how the form of representations can be the key...

	4.3 Attempted Solutions to the Original Frame Problem
	4.3.1 The ‘Sleeping Dog’ Approach to the Frame Problem
	One approach to solving the frame problem is to declare that it doesn't exist, an approach taken ...
	According to McDermott, the logical aspect of the frame problem, the question faced by axiomatic ...
	The computational problem is solved by ‘letting sleeping dogs lie’, or just not computing anythin...
	As for the metaphysical problem, McDermott sees this as the problem of noticing “all and only rel...

	4.3.2 Why the 'Sleeping Dog' Approach Does Not Address the Frame Problem
	It is not necessary to address the frame problem’s logical and computational aspects, as McDermot...
	The ‘sleeping dog’ approach does not, in fact, address the computational facet of the frame probl...
	The restrictions McDermott places on what needs to be encoded are not sufficient to make this a t...

	4.3.3 Circumscription as a Possible Solution to the Original Frame Problem
	The ‘sleeping dogs’ strategy is an attempt to formalize what has been termed as the ‘common sense...
	The situation calculus is a many-sorted first-order predicate calculus, where many- sorted means ...
	A circumscriptive logic adds the additional predicate Abnormal, applying it as follows:
	Equation 4-1. Application of Abnormal in Circumscriptive Logic

	This states that if an action on a fluent in a situation is not abnormal, then the result of the ...
	Although promising, circumscription has been demonstrated to lead to what is referred to as the “...
	Equation 4-2. Effect Axiom 1: Load puts a bullet in the gun
	Equation 4-3. Effect Axiom 2: Shoot action kills victim

	There are two observation sentences about the initial situation, namely that the victim is alive ...
	A number of other criticisms have been directed against the nonmonotonic logics that have been su...

	4.3.4 Recent Developments: Shanahan’s Circumscriptive Event Calculus
	Shanahan (1997) proposes three criteria that a solution to the frame problem ought to meet: repre...
	Shanahan claims that his near solution to the frame problem, the circumscriptive event calculus, ...
	Abstate() is the event calculus version of Abnormal as it is applied to states. Shanahan’s propos...
	Events with non-deterministic effects are handled by assuming that the non-determinism really doe...
	Representing concurrent events requires the introduction of an axiom defining a variation of Happ...
	To represent continuous change, Shanahan uses the predicates Triggers() and Trajectory() and dist...
	Equation 4-4. Axioms concerning horizontal movement

	The next set formalizes what happens when the ball reaches the shaft.
	Equation 4-5. Axioms representing the ball beginning to fall

	The next set represents when the ball reaches the far wall of the shaft and a sequence of bounce ...
	Equation 4-6. Axioms for bounce events

	The last set represents what happens when the ball reaches the bottom of the shaft.
	Equation 4-7. Axioms for halting

	Along with the appropriate domain constraints guaranteeing the uniqueness of the ball’s height an...

	4.3.5 What Is Missing from the Circumscriptive Event Calculus?
	Shanahan is leery of declaring the frame problem solved, so what then remains unsolved? Shanahan ...
	The primary reason for not declaring the circumscriptive calculus of events to be a solution is t...
	Unfortunately, the world does not resemble the ball and shaft example, with simple actions and li...
	A basic tenet of this approach is that complex actions can be broken down into simple, primitive ...
	When complex, concurrent, and continuously changing events occur, we must either provide the fram...


	4.4 How the Specific Frame Problem Leads to the General Frame Problem
	Both Shanahan (1997) and Hayes (1987) contend that the specific frame problem can be divorced fro...
	What this means is that even if cognition is computable in Rapaport’s sense, it might not be real...
	A working alternative to the symbolic approach can be found in the human brain. Although we do no...

	4.5 Superposition of Information as a Step Toward Solving the Frame Problem
	In the previous section, I argued that attempting to pick out and tag primitives in the world wit...
	The relation between representations that are superposed is generally considered to be that of si...
	Superposed information embodying similar representations need not trigger only similar relations....
	Superposition of information may also help alleviate the update problem. Updating the relations p...
	In the final analysis, if the conclusion that the frame problem, both general and specific, is ti...

	4.6 A Test of Semanticity: Robotics and its Failures
	As McCarthy (1996) has pointed out, Dreyfus, in his critiques of symbolic AI (1972, 1992), has gi...
	The task at hand is not merely to find robots that successfully carry out the tasks assigned to t...
	The perceptual approach is more cost-effective and easier to implement than a solution to the gen...
	4.6.1 Percepts without Concepts: The Perceptual (Sensor-based) Approach to Robotics
	Demeter is a New Holland harvester that has been automated by the National Robotics Engineering C...
	Even in an environment as constrained as an alfalfa field and as ideal as the Imperial Valley, De...

	4.6.2 Concepts without Percepts: The Cognitive Approach to Robotics
	At the other extreme is the approach taken by researchers in Cognitive Robotics, which is an effo...
	Their proposed method for tackling high-level robotic control incorporates a version of the situa...
	A pair of robots have been implemented using GOLOG, including a mail delivery robot at the Univer...
	The cognitive robotics research presented above represents only minor progress toward a solution ...

	4.6.3 How to Apply Robotics: A Robot Turing Test
	Although it has been argued that for a computer to successfully pass the Turing Test, it must hav...
	What then are the general criteria for such a test? The following list is not meant to be exhaust...
	1. Goal Identification and Generalization: The goal should not be too specific or too uniquely id...
	2. Complex Goals: The robot’s goals should not require merely simple actions to achieve, such as:...
	3. Dynamic Obstacle Detection and Avoidance: The robot should be able to detect obstacles, whethe...
	4. Goal Reformulation: If achieving the goal is not possible, can the robot reformulate the task ...
	5. Tolerance to own failures: The robot should be able to recover from its own mistakes as well a...
	Requirements such as these will produce howls among researchers who concentrate on the theoretica...
	I have already given a hint as to what an example of such a test might look like. A robot that mu...


	4.7 The Frame Problem Persists
	Symbolic AI faces severe theoretical and implementational obstacles, not least of which is the sp...
	A general test of symbolic AI’s ability to tackle these difficulties can be found in the progress...
	Computational approaches generally rely on methodologically solipsistic notions about the nature ...
	Although methodologically solipsistic approaches to explaining mental content continue to be appl...
	Externalist theories also run the gambit with regard to the degree to which they rely upon the no...
	It is important to note that externalism is not inconsistent with computationalist explanations o...
	Externalism is, therefore, a theory of semantic information, the truth of which is independent of...
	As I will demonstrate, it is just these sorts of qualifications that indicate that externalism as...
	On the face of it, the causal covariance model of representation leads to panpsychism. The eroded...
	This chapter proceeds by first outlining the motivating intuitions of externalism. I then turn to...

	5.1 Twin Earth and the Case against Narrow Content
	5.1.1 Putnam’s Twin Earth Thought-Experiment
	Imagine a world that is a perfect duplicate of the Earth in all regards except for one. On Earth,...
	The answer to this question depends on what one means by ‘thinking the same thought’. If, by this...
	The upshot of Putnam’s thought-experiment (1975) is that external factors contribute to determini...

	5.1.2 Burge on Why Psychology Does Not Need Narrow Content
	Tyler Burge (1982) has argued that not only do de re attitudes (relational attitudes, such as att...
	Burge’s response to this is that psychology is not a science of behavior so crudely imagined as m...
	To illustrate this proposition, Burge points to Marr’s theory of vision. According to Burge, such...
	The externalist intuitions are therefore twofold. The first is that content is wide—that meaning ...


	5.2 Making a Fetish of Natural Selection: Evolutionary Approaches
	If one accepts externalism, then one accepts the proposition that there is more to representation...
	These notions imply that there is a purpose for which a device is suited and a set of conditions ...
	5.2.1 Millikan's Misapplication of Natural Selection
	Ruth Millikan (1984, 1993) has worked out a highly sophisticated account of how ‘biological funct...
	5.2.1.1 Millikan’s Notion of ‘Function’
	Biological categories, in Millikan’s theory, are not determined by membership in a class of items...
	Millikan states that an item has a direct proper function only as a member of a reproductively es...
	Higher-order reproductively established families are of three types:
	Examples are: hearts and kidneys, which are not copied from earlier hearts and kidneys, but rathe...
	Millikan acknowledges the vagueness of this condition, suggesting it maps to vagueness in assigni...
	To define a direct proper function, Millikan first establishes the notion of an ancestor of a rep...
	Now we can define a direct proper function. F is a direct proper function of x, with x belonging ...
	The notion of a Normal explanation keeps cropping up, and it is key to Millikan’s account. A Norm...
	Proper functions that produce items bearing relations to the environment or other items are relat...
	Finally, the Normal explanation of an adapted or derived proper function derives from the Normal ...

	5.2.1.2 Millikan’s Representational Hierarchy
	Ruth Millikan has argued that there exists a hierarchy of types of representations—leading from m...
	At the lowest level are what Millikan terms ‘tacit suppositions’. Tacit suppositions are those as...
	The first of these cases is the apparent mapping of an organism’s features to aspects of the envi...
	The second type of tacit supposition appears whenever a mechanism is required to implicitly repre...
	Intentional icons are the next step up in the hierarchy. Whereas tacit suppositions are built int...
	Intentional icons differ from Dretske’s notion of ‘natural information’ in that they need not per...
	Note the subjunctive mood in the definition. The intentional content of an icon does not consist ...
	The dances of the current generation of bees could universally fail to map to locations of nectar...
	From intentional icons, we move to representations proper. Millikan defines representations as th...
	Farther up Millikan’s ladder of representation, we meet with beliefs. Unlike intentional icons an...

	5.2.1.3 Millikan’s Liberalism
	Faced with the question of how signals acquire semanticity, Millikan begins her answer with the i...
	A further restriction on tacit suppositions is that the absence of the “represented” environmenta...
	Tacit suppositions developed in species through natural selection do not have proper functions by...
	Intentional icons resemble tacit suppositions in that they map to some feature of the environment...
	Here again, Millikan equivocates on the meaning of ‘design’. The dances of bees indicating the lo...
	Millikan also equivocates on the notion of ‘to use’. When intentional icons map to more than one ...
	It is odd that Millikan would use this as an example of an intentional icon, for presumably the m...
	Millikan's conflation of the meanings of ‘use’ and ‘cause’ has serious consequences for the inter...
	Millikan’s treatment of representations only compounds the difficulties arising from her treatmen...
	Millikan’s absurdities are multiplied further if we also accept the position of molecular Darwini...
	Rather than a hierarchical account of how representations arise in organisms, Millikan has produc...
	One source of this failure is her effort to take Dennett’s Intentional Stance seriously. One of t...
	Dennett is not merely saying that intentional systems belong to the class of objects that are int...
	The intentional stance, however, is not taken by Dennett to be a definition of what makes somethi...
	Without intentionalizing hormones and magnetosomes, however, Millikan cannot give a seamless acco...

	5.2.1.4 Millikan’s Chauvinism
	It is important to keep in mind that natural selection does not create anything. It merely determ...
	Therefore, according to Millikan’s theory, newly emergent functions (in the mechanistic sense) ca...
	Not only might the first n generations of an organism be considered lacking a particular represen...
	Imagining such a scenario takes less of a leap than imagining Swampman—but let’s do so nonetheles...
	We cannot extend Millikan’s theory to cover Swampman by arguing that because Swampman is a duplic...
	Nor, given Millikan’s theory, can we dismiss Swampman as missing something that is essential mech...
	Millikan’s theory fails to tell us what we want to know: what it is to represent something. How i...
	Millikan’s theory does not really explain the notion of representation as it pertains to the unde...

	5.2.1.5 Missing Information: What Millikan Hasn’t Told Us about Information
	Computationalist approaches to explaining cognition were criticized in Chapter 2 for having faile...

	5.2.1.6 Conceptual Problems with Millikan’s Account
	Natural selection must stamp its imprimatur on a “mappable” token in order for such a token to be...
	Natural selection is not really a messy process that often fails to clean up after itself. Rather...
	Millikan is wrong, however, in her characterization of natural selection. That natural selection ...
	As Millikan acknowledges, natural selection does not create diversity, but only operates on a giv...
	Not only is the link between evolutionary history and representation irrelevant with regard to ex...


	5.2.2 Dretske’s Representationalism
	In Chapter 2, I argued that Dretske’s causal covariance model of semantic information was inadequ...
	If causal covariance were all there was to the story, then we would be stuck with the problem of ...
	Dretske’s later theory is twofold:
	Stated otherwise: representation is causal covariance under natural conditions, and all mental st...
	5.2.2.1 What Is a Representation?
	Dretske’s formal definition of what it means for a system to represent something is as follows:
	This definition encompasses the two aspects of Dretske’s notion of representation: causal covaria...
	There are two kinds of representations. The first kind, systemic, has its indicator function by v...
	Phenomenal experiences have the job of representing properties of objects, not that there are obj...
	Introspection, according to Dretske, is not an inner sense directed toward experience. Instead, i...
	Dretske’s Representationalism denies to qualia the privileged access that most philosophers have ...
	1. A looks to S the way Xs normally look to S.
	2. A looks different to S from other As.
	These aspects are knowable by others. Knowing the normal functions of other creatures’ sensory sy...
	Dretske’s representational theory of qualia conflicts with the strongly-held intuition that we ca...
	Dretske’s argument against this intuition is that one can extrapolate from one’s own experience a...
	Dretske acknowledges that there is one thing that Mary cannot do that dogfish can: form the conce...
	Consider pains. Dretske contends that pains are representations of bodily states. Pain is conscio...
	Can we even know what a burning sensation in the abdomen is like without having experienced burni...

	5.2.2.2 The Inaccessibility Defense of Phenomenal Externalism
	In his presentation of Representationalism, Dretske takes as granted Twin Earth considerations ab...
	Take the usual suspects from Twin Earth examples, Fred and Twin Fred in this case, but have them ...
	While it is possible that the stuff looks phenomenally the same to Fred and Twin Fred, Dretske ar...
	There is one more leap that we need to accept in order to finish Dretske’s argument. We must acce...
	This is meant to establish externalism about experience by offering a palatable disjunction. If o...

	5.2.2.3 The Inaccessibility Defense Cannot Be Made A Priori
	There are two important claims embedded in Dretske’s inaccessibility argument. The first is that ...
	Imagine again our concert-goer who does not know what a change of key is. He hears the same symph...
	Dretske must argue that this underlying phenomenal similarity that he seems to recognize is due t...
	The second claim, that acquisition of conceptual knowledge alters our experience, follows from Dr...

	5.2.2.4 Defending Externalism against Epiphenomenalism
	The charge of epiphenomenalism is the charge that externalism implies that the mental is irreleva...
	To counter this charge, Dretske argues that historical causes can and are understood as proximate...
	If historical considerations can play a part in causal explanation, then that mental states do no...
	For example, although Swamp Plant has no evolutionary history, it does have an organizing princip...
	The wild improbability of Swampman might tempt some to think that this case can be ignored. This ...
	Dretske argues that psychology should not be reduced to the study of behavior as mere physical mo...
	Dretske hasn’t given one good reason to overcome the intuition that Swampman doesn’t have any exp...


	5.2.3 Why Evolutionary Externalism Doesn’t Work
	Recently, robotics researchers at Case Western University developed a system to construct simple ...
	Evolutionary externalism seeks to carve out a special exception for representations. Only informa...
	A mechanistic function must contribute to the fitness of an organism on average to be a teleologi...
	We can illustrate this point as follows. Suppose a mutation occurs and an animal that otherwise c...
	Selection works over populations of animals, and therefore over the host of conditions that they ...
	This becomes clear when one considers the other aspects of functioning that are relevant to provi...
	Ultimately, the failing of evolutionary externalism is that it looks at the wrong level to unders...


	5.3 The Organism in its Environment: Gibson's Ecological Approach
	In The Ecological Approach to Visual Perception (1979), J. J. Gibson argued against the physics-b...
	When pursuing a physics-based approach, one attempts to analyze visual perception in terms of the...
	In following the ecological approach, one considers surfaces to be directly perceived, not constr...
	Critics of Gibson have argued that he denies a place for information processing, or even for cogn...
	5.3.1 How the Environment Augments Visual Perception
	As Gibson and his defenders understand it, the physics-based approach to understanding visual per...
	The ecological approach suggests that much of what the physics-based approach requires of the vis...
	Differentiation within a solid angle indicates further information about the object. For example,...
	Perception, however, is not a passive process. Motion is essential to visual perception, accordin...
	The information that the ambient light carries is “information” by virtue of the lawlike correspo...
	What does this imply about a theory of semantic information? As Rowlands (1995) points out, infor...
	There must exist a unique correspondence between the structure of the optic array and the structu...
	This theory is similar to Dretske’s notion of natural information in two respects: the correlatio...
	5.3.1.1 How the Environment Augments Cognition
	The theory of information that flows from Gibson’s ecological theory of perception can be easily ...
	Sights, sounds, and smells all help trigger memories. A Gibsonian views this fact as the environm...
	Similarly, we can use external items to help us calculate. When we engage in calculations that ex...
	The principles expounded by Gibson in his theory of the perception of surfaces and objects and as...


	5.3.2 The Radical Gibson: The Theory of Affordances
	A number of authors, including Clark (1997), van Gelder (1995), Kelso (1997), and Edelman (1992),...
	Both Edelman and Gibson rely on a notion of intrinsic value to establish their theories of meanin...
	Just how radical Gibson’s theory is can be seen in his extension of affordances beyond what surfa...
	Gibson’s theory identifies the semanticity of a signal within the signal itself. The problem of h...


	5.4 Problems with Direct Realism
	Gibson’s theory of affordances locates the value and meaning of signals externally to the perceiv...
	While this blunts the obvious criticism of Gibson's theory of affordances, namely that meaning ca...
	Gibson’s theory founders when called upon to explain how learning occurs. As Gibson acknowledged,...
	The more radical version of Gibson's theory also cannot adequately explain how misperceptions occ...
	Gibson’s examples address only the case where a human does not see something that is actually pre...

	5.5 How Ecological Externalism Succeeds Where Evolutionary Externalism Fails
	5.5.1 Defeating Chauvinism
	As we have seen in the critiques of Millikan and Dretske, natural selection does not grant specia...
	Even if the evolutionary history of a function enables us to discover what it is doing, this fact...
	How does ecological externalism fair with Swampman? Let’s provisionally assume that Gibson is cor...
	If we are Representationalists in the mold of Dretske, then we must conclude that Swampman has th...
	This argument holds for our mutated-but-not-yet-selected-for organisms. They have internal charac...

	5.5.2 Dodging Liberalism
	If we were to require that for something to count as a representation for an entity there merely ...
	Presumably, all we would need to do is require that the external information get “used” in some m...
	One possible manner of specifying what it means for information to be used is that it enables beh...
	Thus, whether one avoids liberalism depends on one’s notion of what information is. Deciding on a...

	5.5.3 What Hath Gibson Wrought? Information and Misrepresentation
	Ultimately, Gibson’s theory is an empirical one. It is generally used by externalists to demonstr...
	Though not conclusive by any stretch of the imagination, it ought to be pointed out that the majo...
	What is lacking from Gibson’s theory that could yield more than just a theory of perception is a ...
	Information for Gibson consists of a relation between structure of the optic array (or external i...
	There are three possibilities for what could cause misrepresentation. First, there could be two i...
	The uniqueness of mapping is what must give, because it is false. It is theoretically possible to...
	It would seem that we have to invoke Normal conditions to save ecological externalism. But that w...


	5.6 Tye’s Externalism: Why Tye’s Representationalism Has No Foundation
	In The 10 Problems of Consciousness (1995), Michael Tye expounded a Representational account of e...
	Tye explicitly endorses the causal covariance model of representation:
	There are some important qualifications in this statement. First, the causal covariance model is ...
	At first glance, the definition of optimal conditions seems circular. Optimal conditions are cond...
	Optimal conditions are not necessarily equivalent to Normal conditions. Normal conditions are tho...
	Optimal conditions, if not the conditions for which an attribute was selected for, must be define...
	Tye seems in places to have tentatively thrown his lot in with the evolutionary reading of optima...
	But Tye does not consider sameness of evolutionary history to be a necessary condition for samene...
	Optimal conditions need not be specified in terms of evolutionary history (e.g., Swampman), but c...
	So, if you have an evolutionary history, it matters to what you are experiencing; if you don’t, d...
	Tye cannot have it both ways. Either he must fully embrace evolutionary externalism, or reject it...

	5.7 Whither Externalism?
	Philosophical externalism was initially motivated by the intuition that the internal structure of...
	A plausible externalism begins with the understanding of the environment’s informational contribu...
	The dynamic systems conception of mind offers the externalist these very mechanisms. But it is no...
	We have seen a number of efforts toward understanding the nature of semantic information. Dretske...
	The dynamic systems understanding of semanticity is that the extremes of direct realism and metho...
	Instead of separating the individual from the environment, these two poles should be understood t...
	At first glance, it would seem that what Kelso is suggesting in this passage is primarily a chang...

	6.1 The Nature of Dynamic Systems
	A brief overview of one example of a dynamic system, the Watt governor, was given in chapter 2. V...
	Van Gelder is right to emphasize continuous time dynamic systems, because brains operate in conti...
	Differential equations trace out a trajectory or path for the system in what is called phase spac...
	A strange attractor is an attractor that “exhibits sensitive dependence on initial conditions,” b...
	One way to visualize the dynamics of a system is to interpret the differential equation governing...
	The arrows indicate the flow, which is to the right when >0 and to the left when <0. When =0, the...
	Another way to visualize the dynamics of a system (Strogatz 1994, 30-32) is to use the notion of ...
	The solid circle is the imagined particle as it slides down the side of the potential well. Two a...

	6.2 One Step Further: Self-Organizing Dynamic Systems
	As one changes the parameters of dynamic systems, attractors and repellers can be eliminated or c...
	Self-organizing dynamic systems are systems in which patterns spontaneously arise out of the inte...
	To illustrate these ideas, it is useful to look at a classic example of a self-organizing system:...
	The notion of circular causality is a bit troublesome, since order parameters are abstract entiti...
	In the case of the laser, the control parameter, the electrical charge, was external to the gas i...

	6.3 Conscious vs. Nonconscious Self-organizing Dynamic Systems
	Not all self-organizing dynamic systems are conscious, and so we need to be able to distinguish t...
	These global objectives regulate neural dynamics, according to Skarda and Freeman, in that they “...
	Having described conscious self-organizing systems at the level of Millikan's intentional icons, ...
	Nonetheless, the ability to self-organize is, I contend, a necessary condition for the production...
	Skarda and Freeman have provided one piece of the puzzle, which is, to paraphrase their formulati...
	Watt governors and humans both have the ability to dynamically adjust to conditions in their envi...
	As we saw earlier, Damasio argued that representations arise through the time-locked multiregiona...
	To summarize the dynamic systems interpretation of the phenomena described by Damasio: Patterns e...
	Dynamic systems theory has already been applied to explain the emergence of time- locked neuronal...
	Processes of neural self-organization enable organisms to adapt in real, not evolutionary, time s...
	6.3.1 Self-organization, Order Parameters, and the Theory of Affordances
	Both Skarda and Freeman and Millikan point to the need for including the behavioral function of r...
	Kelso also links his semantic understanding of order parameters to Gibson's theory of affordances...
	Kelso sees order parameters as the essential component in a theory of semantic information. Order...
	This additional component, the action of the mind/brain to alter itself, distinguishes the dynami...
	This is true even in the case where the mind/brain is focused on its own ideas. In this case, env...
	Although humans are capable of drawing their attention to arbitrarily defined categories, the pro...
	The perception of affordances is direct when it is guided by inherent value mechanisms in the sen...
	The discussion so far has been an abstract analysis of how dynamic systems theory applies to ques...


	6.4 How Dynamic Systems Theory Helps Explain the Nature of Categorization
	In chapter 3, I analyzed Phillipe Schyns’s application of SOFM networks to model prototype effect...
	6.4.1 Most Categories Possess Graded Structure
	The classical notion of categories is that they are collections or sets of individuals grouped to...
	The pioneering work of Rosch and Mervis (1975) on prototype effects gave additional credence to t...
	Graded-structure effects have been found for a wide variety of categories, including categories t...
	The early work on graded-structure effects suggested that the results were quite robust, with peo...
	One approach to dealing with graded structures and their instabilities is to dismiss them as mere...
	First, classical categories are late-comers to, as well as exceptions in, the conceptual universe...
	Second, this reasoning denies the usefulness of graded-structure categories. For example, the deg...
	Third, there is a lack of evidence confirming the existence of such pristine structures. Graded-s...
	Finally, what would count as evidence in favor of such a cognitive structure? Given that graded s...
	What graded-structure effects and their instability show is that humans qualify and update their ...

	6.4.2 Why Dynamic Systems Theory Is better Suited to Explaining Graded Structure
	The argument that graded-structure effects do not reveal the nature of the conceptual structure o...
	The dynamic systems approach to explaining categorization effects and the mechanisms underlying c...
	Reentrant mapping refers to a mechanism by which various neural systems coordinate their response...
	Graded structure effects occur when the systems responsible for categorization are characterized ...
	The correlated or time-locked activity of neural subsystems do not produce ‘codes’ that other neu...
	Beyond categorization effects and the processes in the brain that produce these effects, there is...


	6.5 Can Attractors Take the Place of Symbols?
	Pinker and Prince (1999) suggest that two separate and distinct mechanisms are needed to explain ...
	As a critique of PDP methods, this is entirely unobjectionable. PDP systems do indeed “soak up” p...
	As has been noted, nonlinear dynamic systems have bifurcation points, which are points in paramet...
	6.5.1 Can Attractors Figure into Formal Systems?
	The answer to the question that heads this section is clearly no. Attractors are not stand-ins fo...
	The challenge facing the dynamic systems theorist is to explain the emergence of symbolic behavio...
	Dynamic systems theory is not poised to answer this question at the moment. In fact, a general an...
	The explanation that dynamic systems theorists can offer is that the manipulation of external sym...

	6.5.2 Why Internal Symbols Are Not Necessary
	Earlier chapters investigated the question of whether internal symbols and symbol manipulators ar...
	This returns us to Clark’s notions of ‘representation-hungry’ processes and the partial programs ...
	A minimal requirement is a system to organize the representational dynamic systems into sequentia...
	Horgan and Tienson (1996) claim that it is possible to have syntactically structured representati...
	One last property completes Horgan and Tienson’s characterization of the language of thought: rep...
	Research in connectionist linguistics has produced alternatives to the part/whole understanding o...
	But if a language of thought is necessary, why wouldn’t a classical symbol system suffice? In fac...

	6.5.3 Horgan and Tienson’s Dynamical Systems Hypothesis
	Horgan and Tienson reject classical (rule-based) solutions to the supposed need for syntactically...
	Horgan and Tienson’s argument in favor of dynamical systems theory over classical approaches is r...
	1. CTFs are not tractably computable by classical approaches.
	2. The transitions between states in most dynamical systems are not tractably computable.
	3. Therefore, CTFs must be subserved by noncomputable dynamical systems.
	This negative argument is quite different from the positive argument that certain dynamical syste...
	Points on the activation landscape realize cognitive states, and the semantic relations between c...
	Ironically, Horgan and Tienson’s position closely resembles the eliminativist form of connectioni...
	Like Churchland, Horgan and Tienson argue that a connectionist architecture subserves cognition, ...

	6.5.4 Why a Language of Thought Is Not Necessary
	Horgan and Tienson’s argument that cognitive systems need a language of thought can be characteri...
	Horgan and Tienson’s argument extends not merely to behavior that is obviously syntactically stru...
	This example nicely demonstrates how a language could have constituency relationships without par...
	If a language of thought is indeed like this example, then Horgan and Tienson’s position that min...
	An important reason for adopting the dynamic systems approach is that self-organizing complex sys...
	Rule-following behavior does not imply rule-following mechanisms underlying it. Explaining how su...


	6.6 Filling in the Details: How The Theory of Neuronal Group Selection Explains Why Certain Dynam...
	Edelman’s Theory of Neuronal Group Selection has been discussed throughout this dissertation in a...
	6.6.1 What Is Neural Selectionism?
	As a selectionist theory, the TNGS stands in contrast to instructionist theories of the brain tha...
	The TNGS, as a selectionist theory, takes the existence of individual variability among neurons, ...
	In addition to providing an explanation for the existence of extreme variability in neural struct...

	6.6.2 Basic Mechanisms of Neuronal Group Selection
	There are three basic mechanisms postulated by the TNGS: developmental selection, experiential se...
	Experiential selection begins after most of the connections of the primary repertoires are fixed....
	It is important to note that selection is not governed by a global, regulatory mechanism that pic...
	Reentrant mapping is “temporally ongoing parallel signaling by separate maps along ordered anatom...
	Local processes of selection become global through the contribution of reentrant connections. The...

	6.6.3 Creating Minds: Reentrant Mapping, Categorization, and Memory
	The correlation of selected groups within maps with specific types of signals leads to reactivati...
	Perceptual categorization occurs as neural maps self-organize around incoming signals through pro...
	Categorization involves the grouping of disparate signals and responses to signals to produce a u...
	1. By resolving conflicts between responses of different areas or different groups within areas t...
	2. Through cross-modal construction of responses, which is when one area uses the output of anoth...
	3. Through recursive synthesis, which is when higher-level maps influence the inputs they receive...
	Reentrant mapping also allows for the recategorization of signals. Neuronal groups reentrantly co...
	Systems related to the self are the homeostatic brain functions, i.e., the value systems, includi...
	Higher-order consciousness frees the individual from the demands of the moment and enables him to...
	In contrast to Horgan and Tienson, Edelman considers linguistic capability an enhancement to thou...

	6.6.4 Why Neuronal Group Selectionism Does Not Imply the Perception of Affordances
	Although Edelman has linked his theory to Gibson’s ecological approach, he has given few indicati...
	Selectionism enables direct perception of complex entities in that the neural ensembles responsib...
	An analogy to this can be found in Darwinian evolution itself. It is rare to find a one- to-one m...
	It is important to note that neural selectionism only provides a plausible mechanism for the emer...
	Neural selectionism allows for varying degrees of directness in perception. It enables a system t...


	6.7 Selectionist, Self-organizing Dynamics Underlies the Functioning of Minds
	Timothy van Gelder illustrated the differences between dynamic and computational systems by compa...
	The aspects of minds that set them apart from dynamic systems in general are their ability to pro...
	The nature of attractors in the mind/brain dynamic system helps to explain cognitive phenomena su...
	Thus, a language of thought is not required to explain how dynamic systems carry out what is cons...
	Computationalism introduces a layer of mental architecture between the behavioral outputs of a sy...
	But the frame problem is more a symptom of a deeper disorder rather than the disorder itself. Thi...
	Not all computationalists believe that symbols even need to be grounded. If we follow this line f...
	Computationalism has diverged into two extremes: one that recognizes computationalism’s practical...
	The alternative to pure computationalism is, therefore, not to link it to the world, but to rejec...

	7.1 Dynamic Systems Behaviorism: An Alternative to Computationalism
	It is the belief that the mind/brain creates and stores discrete concepts that underpins the noti...
	So what is an ‘attitude’? At the most basic level, that of perception and perceptual categorizati...
	Thus, in addition to the formation of a particular type of neural pattern within a particular con...
	The attractor states of a system or its subsystems are not analogs of symbols. They are not abstr...
	Functionalists individuate mental states according to their function and their relations to other...
	The notion of a ‘mental state’ in DSB therefore bears a different meaning than in computationalis...
	Thus, DSB avoids anti-reductionist arguments such as that of Crane and Mellor (1990) by accepting...
	7.1.1 Behaviorism’s Flaws and How to Avoid Them
	DSB does not identify being in a particular mental state either with behaving in a particular pub...
	This is a move similar to that of functionalism (just how similar will be discussed in the next s...
	Behaviorism is open to the charge of chauvinism in its attribution of mental states, which is to ...
	Another objection to behaviorism is that complex mental states, such as believing that Martin Bor...
	The fact that DSB uses the same maneuvers as functionalism to escape behaviorism’s flaws suggests...

	7.1.2 How Dynamic Systems Behaviorism differs from Functionalism
	As Block (1978) points out, behaviorism and functionalism differ only by virtue of functionalism’...
	DSB follows teleological functionalism by rejecting the computer model of mind and its underlying...
	Stipulating that it is the environmental context that helps determine mental states and not just ...
	Some variation of Descartes’s evil genius is often trotted out to demonstrate that the environmen...
	The behavior elicited within the directly related neural subsystems refers to the activity of pat...
	Internal behavioral outputs consist of the internal causal relations between neural subsystems. T...
	These characteristics are not meant to be necessary and sufficient conditions for a physical proc...
	DSB could be considered a form of teleological functionalism but for three differences. The funct...

	7.1.3 Avoiding Liberalism
	Because Turing-machine functionalism is a plausible expression of teleological functionalism, the...
	Block imagines a situation in which a vast number of people, the population of China, are given t...
	Teleological functionalism is supposed to avoid liberalism by defining function as the role of ob...
	DSB can be seen as a subset of teleological functionalism that is disjoint from Turing- machine f...
	What teleological functionalists were attempting to argue is that the behavior of neurons cannot ...


	7.2 Dynamic Systems Behaviorism as Ecological Externalism
	All forms of externalism reject the notion that mental states supervene on brain states. The vari...
	It was noted that the mapping between external informational structure and the environmental feat...
	I suggest that the notion of an attractor in state space is just this needed conceptual framework...
	How the environment and how the organism may vary, as well as how they may covary, such that a co...
	The notion of optimal conditions and the unique mapping of informational structure to environment...
	The “fuzziness” of human categorization is a product both of the variability of environment and v...
	Because of its temporal aspect, dynamic systems theory is particularly suited for understanding h...
	7.2.1 Swampman Returns
	If representation consists of an environment-organism system governed by dynamic equations, it wo...
	What does this mean for Swampman? Swampman is once again a microphysical duplicate of Davidson—th...
	Does this latter fact violate what we know or intuit? Given different initial conditions, Swampma...
	If Swampman and Davidson are the same temporal slices of Davidson (this does not mean that Swampm...
	The answer is Yes and No. What Dynamic Systems Behaviorism implies is that a mechanism for self-o...
	Correctly created, Swampman has the same representations as his double. But does he experience wh...


	7.3 A Scientific Foundation for Phenomenology
	As Edelman points out, neuroscientists have tended to avoid formulating theories of consciousness...
	Even granting this possibility, there remains a nagging question about the applicability of objec...
	It would seem that the mental has some odd properties not attributable to physical objects. If th...
	So it would seem that the study of phenomenal qualities, Phenomenology, is divorced from the stud...
	7.3.1 Dynamic Systems Behaviorism as Representationalism
	7.3.1.1 What Is the Phenomenal Character of Experience?
	Phenomenal Representationalists like Tye and Dretske hold that experience itself is representatio...
	In the Representationalist view, sensory modules produce representations of external and internal...
	Contents are abstract if the only objects that enter into these contents are the subjects of expe...
	For the contents to be poised, the outputs of the sensory modules must have a maplike relationshi...
	This would suggest that contents are not abstract. External factors must be present in order for ...
	This would seem to imply that patterns of behavior in the sensory modules are “about” what they w...
	Does the brain-in-a-vat thought-experiment undermine this? The thought-experiment is that we plac...
	How does a Dynamic Systems Behaviorist solve this problem? By realizing that is only a problem fo...

	7.3.1.2 How Representationalism Helps Solve the Problems of Consciousness
	Attitudes, as envisioned in Dynamic Systems Behaviorism, are patterns of behavior, not physical o...
	This directly mirrors the arguments made by Tye as to why the Representationalist notion of exper...
	Tye’s solution to the Problem of Perspectival Subjectivity, on the other hand, does require accep...
	Once the spookiness of consciousness is gone, the mechanisms for causal interaction become eviden...
	This, of course, is just a rough sketch of Tye’s sketch of a solution to the problems of consciou...



	7.4 Symbols as Social Constructs
	Humans display a wide range of behavior that can be classified as symbol manipulation. From langu...
	DSB rejects this projection of external symbolic behavior back into the mind. Instead, symbols ar...

	7.5 Conclusion: Representation and Information
	The information-processing model of mind attempts to decompose thoughts into primitive elements a...
	Kelso (1997) has outlined one possible interpretation of the semantic features of dynamic systems...
	Kelso argues that these order parameters are meaningful to the organism, that they are meaningful...
	Unlike a symbol, which has no inherent connection to what it represents and therefore requires ‘g...
	DSB is therefore neither a radically environmentalist nor a methodologically solipsistic theory o...
	This approach captures what Andy Clark (1997) is attempting with his augmentation of symbol syste...
	Representations are not bits of information gathered from the environment, stored in the brain, a...
	Any system can be analyzed in terms of Shannon information flow. This fact should not lead to the...
	The computationalist information-processing model of mind seeks to explain the operations of the ...
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