1. Spatial Representation and Reasoning in Artificial Intelligence

Laure Vieu

1.1. Introduction

Space, like time, is one of the most fundamental categories of human
cognition. It structures all our activities and relationships with the external
world. It also structures many of our reasoning capabilities: it serves as the
basis for many metaphors, including temporal, and gave rise to mathematics
itself, geometry being the first formal system known.

However, space is inherently more complex than time, because it
is multidimensional. In addition, even if unarguably less abstract than
time, space is epistemologically multiple. Without going seriously into
psychological studies, it is obvious that a larger number of knowledge
sources (as vision, touch, hearing and kinaesthesis) contribute to establish
mental representations of space. The multiplicity of spatial knowledge is
also made evident by language. Space is grammaticalized in very few
natural languages, and spatial concepts are spread over a wide range of
syntactic classes: nouns (such as part nouns), prepositions, verbs (position
and motion), adverbs, adjectives (shape).

Even though modeling spatial knowledge is clearly a crucial domain
of artificial intelligence (AI), the difficulty of reducing all of it to a small
number of primitive spatial concepts in an obvious or widely admitted
fashion may explain why spatial representation and reasoning developed as
an homogeneous clearly identified branch of AI much later than temporal
representation and reasoning.

The earliest work appeared within other domains of AI and computer
science, with a variety of objectives. Areas like robotics, physical reasoning,
computer vision, natural language understanding, geographic information
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systems, and computer-aided design have contributed to the study of
representing and reasoning with spatial knowledge, but space has not been
really focused on as such there. A view widely held was that the ontology
of space was unproblematic, topology and Euclidean geometry being the
only mathematical models considered. This work then concentrated more
on reasoning methods than on spatial representation, and, being closely
linked to a variety of tasks, no real generic class of spatial problems and
solutions emerged. It was even claimed that such a class does not exist
(see Section 1.3.5). Only some of this work will be reported in this chapter,
mostly in Section 1.4.

It is only during the last five years that fundamental studies on spatial
representation and reasoning in Al, as such, have appeared in a significant
number. A community has gathered now, as manifested by the recent
increase in meetings and conferences (totally or in a great part) focused
on the topic

(Mark and Frank, 1991; Frank et al., 1992; Aurnague et al., 1993;
Frank and Campari, 1993; Guarino and Poli, 1993; Eschenbach et al., 1994;
Amsili et al., 1995; Frank and Kuhn, 1995), and the series of workshops
on spatial and temporal reasoning held in conjunction with major Al
conferences such as IJCAI, AAAI, and ECAI since 1993. The main issues
of the field have now begun to be identified, and a (still small) number
of survey or field-defining papers and books have appeared (Davis, 1990;
Freksa, 1991; McDermott, 1992a; Freksa and Rohrig, 1993; Herndndez,
1994). :

Although the term spatial representation and reasoning in AI still
covers work toward the development of numerical algorithmic methods
based on quantitative representations of space, the scope of this chapter
is restricted to the symbolic approach, and it considers only qualitative
spatial representations and symbolic reasoning methods. As a result, work
more or less related to the field of computational geometry is completely
left out here. For a survey of the field of computational geometry, the reader
may refer to, for example, Preparata and Shamos (1985).

What remains in the scope of this chapter is the field that is now usually
called qualitative spatial reasoning. This name was derived from the older
field of qualitative reasoning, although at least two important differences
should be stressed. First, the fields of qualitative reasoning and qualitative
physics have in a great part dealt with scales discretizing quantitative
domains or “quantity spaces” — that is, imprecise numerical values.
Second, the representational problems raised by such quantity spaces being
few, qualitative reasoning has then focused on reasoning methods. On the
other hand, and however named, the field of qualitative spatial reasoning
has given rise essentially to representational problems, which are far from
being restricted to the discretization of a dense numerical space.
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In the search for adequate spatial representations supporting genuine
qualitative spatial reasoning, researchers in Al have started to give up the
assumption that the ontology of space is straightforward and to address the
issue of the nature of basic spatial concepts and spatial entities. Introducing
several aspects of this ontological issue will constitute the core of this
chapter. In the next two sections, some basic aspects of the ontology of space
are discussed, and a number of approaches illustrating possible choices are
presented. This presentation cannot thus pretend to cover exhaustively the
work done in the field.

The subfield of spatial reasoning proper is then the subject of
Section 1.4. Only a sketchy general picture of this field is given, considering
the different ways of handling spatial representations as structuring factor.
The very specific area of automatic geometric theorem proving is not
examined there, even though algebraic geometry may in a sense be seen
as symbolic and theorem proving techniques also. The interested reader
may refer to Chou (1988) for a review of this area.

Finally, some issues that constitute interesting lines of current and
future research in this field are emphasized in the last section.

1.2. Ontologies of Space and Spatial Knowledge Representation
1.2.1. GENERAL ASPECTS OF AN ONTOLOGY OF SPACE

The issue of the nature of spatial knowledge is certainly not a new topic
raised by AI. On the contrary, it is an extremely old domain of research,
investigated first in philosophy and mathematics, later in physics and
psychology.

1.2.1.1. Which Space?
What is actually called space in all these disciplines varies significantly. It
may be the real extent of the several dimensions in which we live. Physics
postulates that we can observe and measure this physical space and then
model it accordingly. It may be a cognitive representation of the physical
space — that is, either the space human beings conceive from what they
perceive, the space they store in memory and are able to recall through
mental imagery, or the space they talk about. Modeling cognitive, mental,
or commonsense space (or spaces) is here also an empirical enterprise, taken
up by philosophy, psychology, and linguistics. Lastly, it may be an abstract
construct, belonging to the class of mathematical structures that initially
were built with the purpose of modeling the previous kinds of spaces.
Researchers in Al have intended to model either physical (for example,
for robotics applications) or commonsense (for natural language processing
purposes) space. In work aimed at giving general theories of space, this
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choice is sometimes left implicit. Moreover, arguments taken from both
domains are often mixed. Confusion possibly arises from the fact that
it is a widespread methodology in AI to rely on commonsense views for
modeling physical as well as mental space. It might also be a sequel of
the much held view that, even if the choice of primitives for an adequate
representational framework is considered as debatable, the ontology of its
intended model is still assumed to be unproblematic. For these researchers
who perhaps adopt a Kantian view, space is Euclidean geometry without
question. Reconsidering the classical distinction of goals in AI between
obtaining efficient systems or cognitively accurate systems amounts here
to distinguish clearly between physical space and mental space; and for
both cases, we believe it useful not to take for granted that the ontology
of space is a settled question. It is also plausible that in focusing on the
differences between physical and commonsense space, one could find their
commonalities and thus make further progress in the search for most general
theories of space. Looking carefully at the properties of linguistic space with
an AT perspective is, in these two respects, very important for the field. The
chapter by Herskovits in this book (Chapter 6) contributes to this goal.

Whatever space is considered, the choice of a representational formalism
of space and of its associated ontology is also based on several assumptions.
The range of possible hypotheses is certainly not a novelty introduced by Al
These hypotheses recurrently appeared in the age-old philosophical debate
on the nature of space.

1.2.1.2. Absolute or Relative Space?
The first choice to be made is between absolute and relative! space
alternative made famous by the Newton-Leibniz controversy. An absolute
space is a void, or “container,” existing e priori, independently of the
(physical or mental) objects that happen to be located in it. It is made
up of purely spatial entities. In order to be used, such a space needs to be
equipped with a location (or place) function giving each object its place. For
its part, the relative approach denies the necessity of assuming the existence
of an abstract independent space. A relative space is a construct induced
by spatial relations over non-purely spatial entities — material bodies in
the case of physical space, mental entities with more properties than just
spatial ones in the case of cognitive space. The absolute option has been
particularly fruitful in physics and is of course what mathematics deals
with. The relative option seems to fit better with the cognitive approach,
since the elements of an abstract space are not perceptible as such, but only
through the existence of some material entities being located in it. It is also
ontologically more parsimonious. Theories of relative space have, however,
been much less developed than absolute ones.

If we assume the existence of an absolute space, we need next to choose




SPATIAL REPRESENTATION AND REASONING IN Al 9

between a space with a global structure or with only local properties. In
what is here called a global space, each spatial entity is a location in a
general reference frame so that its relative position with respect to all other
spatial entities is already completely determined. An everyday example of
a global space is a sheet of paper that serves as the backdrop for diagrams.
In a local space, a spatial entity is situated through a number of explicit
spatial relations with some, but not necessarily all, other spatial entities.
The other spatial relations may be obtained by deduction, but some may be
totally unspecified. An everyday example of local space is linguistic space,
in which an object can be said to be close to another, without specifying
in which direction. Thus, a global space is necessarily complete, whereas a
local space can be either complete or incomplete.

This second question is closely related to the psychological issue of
whether mental space is basically visual and constituted of images or
depictions on which spatial relations between spatial entities have to be
read (pictorial or analog or depictive representation) or whether mental
space has a more linguistic flavor and is structured by propositions in
which spatial relations relate spatial entities (propositional or descriptive
representation) (Kosslyn, 1980; Paivio, 1986; Pylyshyn, 1985). A current
position held is that (at least) both representational systems are present
in the mind and involved in mental imagery processes (Kosslyn, 1980) or
that, in fact, spatial cognition handles more complex structures covering
both aspects (Tversky, 1993a).

Mathematically and computationally speaking, it amounts to choosing
between a coordinate space, such as Cartesian geometry, or an axiomatic
theory of space, such as Buclidean geometry, as in Hilbert (1971). In the
former, spatial properties are implicitly given by the algebraic properties
of numerical orders on several coordinate axes. Analytical geometry thus
commits one from the start to standard analysis, as well as to a higher-
order language, since a geometric figure is defined as a set of coordinate
points. In the latter, usually called elementary geometry, axioms state
fundamental properties of space. It does not commit to the use of number
theory or set theory: congruence, determining distance, and order are not
necessarily numerical; lines and planes are not necessarily sets of points.? Of
course, there are strong links between the two kinds of structures. Cartesian
geometry is a model of Hilbert’s axiomatic system. But their underlying
ontologies are very different, as are the reasoning methods applied to them.®

Since relative spaces are by definition theories of spatial relations, there
is a strong similarity between relative spaces and local absolute spaces.
At least two important aspects make the difference, however. First, they
hold different constraints on possible basic entities. In a relative space,
basic entities are constrained by the nature of the domain, so that their
spatial properties depend on their other essential properties. For instance,
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in case of a physical relative space, the material constitution of physical
bodies imply that they are all spatially extended. An absolute space is
independent, so there is no other constraint than elegance, expressive power,
and computational efficiency in the choice of basic entities. In a sense
then, absolute spaces, in principle, are more general. However, to serve
as an adequate representational framework, absolute spaces sometimes
reflect some of the specific properties of physical or commonsense space.
Second, their capacity to express motion is radically different. In an absolute
space, the motion of a physical body is a change in value of the location
function. In a relative space, the motion of a physical body is a change
in spatial relationship with respect to some other bodies. Motion is then
necessarily relative, which raises the question of the choice of adequate
reference objects. More important, an absolute space is assumed to persist
through time, so that expressing the continuity of motion amounts to
stating that the location function is continuous. In contrast, a relative space
is different at each different (spatial) state of affairs, so that continuity of
motion depends on the identity of physical bodies through time, which is
metaphysically problematic.

For these reasons, or just because they were already more widespread
in the literature, most authors in AI have chosen absolute spaces
as representational frameworks. Classical mathematical global spaces
(coordinate spaces) have been successfully used in computational geometry.
In the knowledge representation area of AI, the necessity to cope with
imprecision, incompleteness, and uncertainty of knowledge, both in physical
space and cognitive space, led to drop this approach for a more qualitative
one. As we will see, a number of authors still adopt a space that can be
characterized as global. They keep the global axes for orientation and relax
at least one of the undesirable characteristics of classical coordinate spaces,
usually their metric, changing dense numerical orders for symbolic orders or
discretizing them to deal with imprecision. However, local absolute spaces
best fit these requirements. Being symbolic, they are particularly adequate
for coping with imprecision and representing incomplete information. Gobal
spaces require dealing either with disjunctions for the values of the location
function or with numerical equations with free variables as in the algebraic
geometry approach.

As a consequence, in the qualitative spatial reasoning community the
kind of space adopted is generally local absolute space. This chapter focuses
on local absolute spaces and describes only a few approaches based on global
spaces.

Formal frameworks widely used for representing local spaces are of two
types:
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— Axiomatic theories, generally, first-order. These theories consist of a
language (relation and function primitives) and a number of axioms.

— Relation algebras or “calculi.” An exhaustive set of mutually exclusive
primitive relations is given. The inferential behavior of these relations
is given in transitivity tables, in the spirit of Allen (1983). These tables
implement relation combination — the algebra of relations, a relation
in the general sense being any disjunction of primitive relations.

Axiomatic theories are far richer in their expressive power. Indeed,
only a small subclass of first-order axiomatic theories can be converted
into relational algebras. On the other hand, reasoning in relation algebras,
especially those based on binary relations, is made much easier by their
good computational properties. Some authors use both versions of the same
theory: they first present and discuss an axiomatic theory, more expressive,
and then use an equivalent relational algebra for the implementation. It
must be noted that, ideally, in both cases, a proof of which structures
are the models of the theory should be given to fully characterize what
the primitive concepts and entities are actually able to describe. Models,
however, have been rarely worked out in the qualitative spatial reasoning
literature.

The concrete elements of an ontology of absolute space actually are the
basic spatial entities constituting the space, as well as the primitive spatial
notions expressed over these entities. These two elements are actually
interdependent, some notions being difficult, if not impossible, to express
over some kinds of entities. We next introduce the kinds of basic entities
and primitive notions that have been used for representing space. In the
following section, we present several spatial representation frameworks
developed in Al, classifying them according to these ontological criteria
— first to the nature of spatial entities chosen as primitives, and then to
the notions that are expressed.

1.2.2. ELEMENTS OF SPATIAL ONTOLOGIES

1.2.2.1. Basic FEntities
As for time, for which there is an alternative between instant-based
and period-based ontologies (van Benthem, 1983), basic spatial entities
constituting absolute spaces can be of two types. On the one hand, space
can be made of abstract lower-dimensional entities like points of classical
geometry. On the other hand, basic entities can be extended portions of
the same dimension than the whole space.

Choosing the first type of entities eases the development of theories
because geometry has been investigated for a long time. Even though the
objectives of Al are not those of mathematics, it helps to rely on well-known
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properties of the structures usually sought as intended models. Approaches
based on points are presented in Section 1.3.1.

The second option does not benefit as much from mathematical
results. The development of these theories is accordingly less advanced.
Neverthéless, advantages are many, and much work is currently being done
in this area. Extended entities are spatially more similar to the basic
entities of physical or mental relative spaces. In particular, the argument of
adequacy is often held by researchers aiming at modeling commensense
(absolute) space. On the efficiency side, because extended entities are
directly appropriate to serve as values of the location function, theories
need not go higher order (for example, with sets of points as values) or
be combined with an abstraction process (such as considering all objects
as punctual). It is also possible for a theory based on extended entities to
have a finite and still connected domain (space can be discrete without
presenting gaps), thus facilitating their implementation.

The global-local option has an influence over the choice of basic entities.
Point-based space can indifferently be local or global. To be accurate, in
a global space points are no longer the real basic entities; these are the
coordinates. Similarly, in a global space based on extended entities, the
real basic entities are segments of the axes. This means that the shape of
extended entities in a global space is fixed (in a Cartesian frame, rectangular
or parallelipipedic), while in a local space, regions of any shape can be
chosen. For extended basic entities, we then distinguish approaches where
space is global and based on arrays of cells (Section 1.3.2) or tuples of
intervals (Section 1.3.3), from approaches where space is local and based
on regions (Section 1.3.4).

As for time, there are translation procedures between point-based
ontologies and region-based ontologies. Defining one in terms of the other,
for example, regions as sets of points and points as ultrafilters of regions,’
requires the use of a higher-order language and thus is computationally
unattractive. For this reason, when the knowledge to be represented
bears on both kinds of entities, mixed ontologies are preferred. The
domain of basic entities is then split into categories and the language
includes incidence relations between them. The multidimensionality of
space marks really the difference with time when more than two categories
are considered, such as points, regions, lines and surfaces. As we already
said, this is the case in some axiomatic theories of Euclidean geometry.
Approaches based on mixed ontologies are presented in Section 1.3.5.

1.2.2.2. Primitive Notions

Spatial relations and properties are generally grouped into three domains:
topology, orientation, and distance. Psychological studies have proved that
these notions are acquired by the child successively, in this order (Piaget
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and Inhelder, 1948). We now give a quick overview of these three groups of
concepts. In this description, we heavily rely on mathematical concepts,
principally introduced in different families of theories: topology, metric
spaces, Buclidean geometry, and Cartesian geometry, which are what we
have in mind when we talk about classical mathematical spaces. It must be
noted that the orientation and distance groups are not clearly distinguished
in these mathematical spaces. In Euclidean geometry, orientation and
distance concepts are intimately related. From the standard axiomatics
of Hilbert (1971), the axiom groups of incidence, order, and parallels deal
only with orientation; but the other two groups, congruence and continuity,
involve both orientation and distance. In metric spaces — which include
the most standard mathematical spaces, as IR® — the real-valued distance
function induces both an associated topology and orientation. Even if they
are not so clearly marked out in mathematics, in AI it has proved to
be fruitful to investigate topology, orientation, and distance separately,
sometimes for different applicative purposes.

Of course, there are important spatial relations and properties that
belong to none of these groups. These concepts are significantly more
complex and accordingly much less treated in the literature. This is the
case of shape properties, or morphology, which will be almost left out of
the discussion because no systematic account has been proposed up to now
in a qualitative manner. However, some morphological concepts have begun
to be introduced on regions (see Section 1.3.4.3).

Topology. Topological theories are generally seen as the most abstract
spatial structures, the weakest geometries. Mathematically speaking, a
topological space is a structure (X, {2) where:

— X is a set (the points of the space)

— Q is a subset of 2% (the open sets, or the topology)

— Q includes § and X

— the intersection of any two open sets (two elements of §2) is an open
set (belongs to )

— the union of any number of open sets is an open set.

A closed set is the complement in X of an open set.

There are several ways of looking at the spatial notions brought about
by topology (Hocking and Young, 1961). Under one perspective, topology
principally defines the notions of boundary and contact. An open subset of
the topological space is seen as including none of its boundaries and a closed
set as including all of them.® The boundary of a subset © C X, noted 0z, is
then defined as being the difference between its closure (the smallest closed
set including it, noted T) and its interior (the biggest open set included

in it, noted ). The relation of contact or esternal connection between two
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subsets can be based on the sharing of boundaries. An interesting derived
property is the one of being a connected subset — a one-piece space portion.

According to another view, topology essentially is the theory defining
the notion of continuity. A function between two topologies is continuous
if it maps an open set onto an open set. Since it characterizes invariants
under continuous deformations, topology has been called the geometry of
the rubber sheet. Algebraic topology defines the rank of the homology group
of a subset — that is, the number of its “holes” or discontinuities in its
boundary. It thus gives a somewhat rough notion of shape distinguishing a
doughnut from a ball.

In representing spatial relations in other frameworks than classical
topology (in particular in spaces not constituted of points as basic entities),
some of these notions sometimes take a quite different meaning. For
instance, in region-based spaces, contact may be modeled without calling
for the notion of boundary or even that of open set. Nonetheless, theories
axiomatizing contact may still.be called topological because they retain
most of the classical properties of contact.

In classical topology topological notions apply to subsets and imply
a notion of extension’ — contrarily to orientation or distance notions
that classically apply to isolated points. As a consequence, in Al the set-
theoretical notions of inclusion, overlapping, intersection, and union are
often grouped with the topology cluster, even though strictly speaking
these are not topological notions. What 'is more, they do not necessarily
suppose the membership relation of set theory. When modeled directly on
extended entities, they constitute what is called a mereology — a theory of
part-whole relation (Lesniewski, 1931; Simons, 1987). Accordingly, theories
modeling topological concepts without set theory, taking extended entities
as basic entities, are known as mereotopologies.

Orientation. We may distinguish two levels of basic orientational notions
stemming from geometry. Relations of the first level are elementary in the
sense that they enable the definition of relations of the second level, but in
Al most authors treat orientation from the perspective of the second level
only, introducing directly a complex system of relations.

First are the concepts of elementary geometry related to the notion
of straight line (sometimes called arrangement): alignment between three
points or incidence of a point on a line, betweenness of one point with
respect to two other points and order on a line, congruence and comparisons
of angles (pairs of lines or triplets of points), parallelism and orthogonality
between lines. Betweenness is the primitive relation axiomatized both in
Hilbert (1971) and Tarski (1959) as the basis of orientation. These concepts
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of elementary geometry are not easily transposed to ontologies that are not
based on points.

Second, are the concepts of vectorial geometry enabling an axis (a
directed line or direction) to establish an order throughout the space,
not just on a line. This order presupposes implicitly the notion of
orthogonal projection on an axis. Vectorial geometry is not restricted to
point-based spaces. In global spaces, this orientational process is given a
particular prominence, since the entities themselves depend ontologically
on a reference frame, usually composed of several axes as in Cartesian
geometry. Actually, reference frames are often used in local spaces as
well, only implicitly through the use of binary relations. Two or three
orthogonal axes (for two- or three-dimensional space) are frequent, thus
yielding relations such as is right of, is front-left of, or is Northwest of,
depending on the labeling of the reference frame axes. But more generally,
a system of any number of axes dividing the space into several sectors or
cones may be conceived.

In local spaces, considering orientation relations generated by a
reference frame raises the problem of choosing a specific reference frame
together with a labeling. Which reference frames are used? When are they
appropriate? Even though it is not possible to answer them on purely spatial
grounds, these questions have been debated to some extent, maybe because
of their great importance in human communication, reference frames being
often left implicit. These and other aspects of linguistic space are discussed
in this book in Herskovits's chapter (Chapter 6). Here, let us just recall
that literature distinguishes between three types of orientation:

— Absolute orientation. A unique, more or less arbitrary, reference frame
is used. The two-dimensional reference frame of cardinal directions
(north/south, east/west) is common in representing geographic space.
The inherent reference frame of a global space yields, of course, an
absolute orientation.

— Intrinsic orientation. The intrinsic reference frame of the reference
entity (the second argument in a binary relation like is left of) is used.
Intrinsic reference frames exist only for extended entities and originate
in a variety of inherent properties of the entity: shape (particularly
symmetry), motion, typical position, functional properties etc. The
most common intrinsic reference frames in three dimensions consist of
three axes: up/down, front/back, and left/right.

— Contestual, extrinsic and deictic orientation. The intrinsic reference
frame of another entity, contextually salient but distinct from the
reference entity, is used. When this entity is the speaker or the observer,
we have a case of deictic orientation. When it is neither the speaker,
nor any of the arguments of the spatial relation, orientation is called
extrinsic.
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Distance. In elementary geometry, the notion of relative distance is
introduced through the relation of congruence between segments — that
is, through a quaternary relation of equidistance on points: z and y are
as far apart as are z and ¢t (Hilbert, 1971; Tarski, 1959). Relative distance
can also be introduced symbolically with the ternary relation z is closer
to y than it is to 2z This is the kind of distance most easily expressed
in local spaces, whether point-based or region-based. However, what is
usually called distance is the numerical function on which metric spaces
are defined. More precisely, a metric distance is a function d mapping pairs
of spatial points onto IRy such that d(z,z) = 0, d(z,y) = d(y,z), and
d(z,z) < d(z,y) + d(y,z) (triangle inequality). It is worth noting that
a metric space is not necessarily Euclidean. For instance, curved spaces
(where parallels meet) admit of other distances.

As already mentioned, in geometry there is an inherent link between
distance and orientation. Classical global spaces, having dense numerical
orders on the axes, enable the definition of distance functions (Euclidean
or not — that is, preserving congruence or not) that makes them metric.
On the other hand, because metric distance is properly additive, it induces
orientation:

Between(y, , z) = d(z, 2) = d(z,y) + d(y, 2)

Similarly, betweenness could, in principle, be defined in terms of the relative
distance relation is closer to on points, exploiting an equivalent of triangle
inequality (van Benthem, 1983):

Between(y, z, z) = Vi(t = y V closer(y, z,t) V closer(y, z,t))

In qualitative representations of space, a metric distance is rarely used,
and, when a valued distance function is sought, it is replaced by a discrete
distance. In discrete spaces like occupancy arrays, distance is simply a
function on IN,. In these cases, the dependency between distance and
orientation is altered, and, for instance, “circles” may become squares. Of a
more qualitative flavor are theories modeling concepts such as far or close
or, in fact, any qualitative scale discretizing the continuous real domain.
These discrete distances are sometimes called naming distances. Like for
any other “quantity space” of qualitative physics (Bobrow, 1984), general
purpose theories accounting of fuzziness and granularity phenomena may be
used. However, it is in general difficult to axiomatize properly the additivity
of distance and triangle inequality, thus loosing essential spatial properties
and the link between distance and orientation.

Even though they are most often modeled on point-based spaces,
distance concepts can be transposed to spaces based on other kinds of
entities, in a rather straightforward fashion.
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1.2.3. ADDITIONAL FEATURES

After choosing the ontology of a space, there are still a number of other
possible general assumptions on its nature. Any of these parameters may
be left unspecified, giving a more general but incomplete theory, which is
computationally a drawback.

Space can be assumed to be bounded or unbounded (for any pair of
points there is always a third one situated further in the same direction,
or there is no maximal region), discrete or dense (between any two points
there is a third one, or between any two nested open regions there is a third
one), or even continuous (betweenness on points satisfies the Dedekind-cut
property), and, if basic entities are extended, atomic or dissective (any
region has a proper part).

All of these parameters affect of course the finite nature of the domain
of the resulting theory and thus the computational properties of its
implementations. For this reason, sometimes a difference is made between
the intended ontology of space and the space which is actually represented.
For instance, space can be assumed to be dense but represented as being
discrete (Habel, 1994). In this case, the choice of a granularity is not
intrinsic but dependent of a specific task. To really capture the “density
in intension” of the intended models, the capacity of integrating various
granularities in the same theory (switching granularities or combining
them) is then an important further parameter.

Finally, the dimensionality of space may be fixed (and is necessarily
so in global spaces), whether two-dimensional, three-dimensional, or even
four-dimensional if space-time is considered.

Still other aspects can be considered if one takes into account the kind of
entities one wishes to locate in space. For instance, the distinction between
table-top space, small-scale space, and large-scale space is often made in Al
and in cognitive sciences in general. Some spatial notions are more or less
relevant depending on these perspectives. More important perhaps, there
are ontological dependencies between properties of located objects and
properties of spatial entities that can be exploited. These aspects are more
deeply discussed in this book in Casati and Varzi's chapter (ontological
dependencies between the materiality of objects and space, Chapter 3)
and in Frank’s chapter (ontological constraints on the spatial properties
of geographical objects, Chapter 5).

1.3. Overview of Approaches to Spatial Representation in AI

This section presents a number of well-known or representative approaches
to spatial representation that take points, cells in arrays, tuples of intervals,
and regions, as basic spatial entities. It then examines approaches based on
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mixed ontologies and finally briefly discusses the relationship between
and time.

1.3.1. POINT-BASED SPACES

Approaches to spatial representation based on points and deﬁning_
spaces typically focus on orientation and distance concepts since d
with topology would require going higher order.

1.3.1.1. Orientation
Elementary orientation relations applied to points are at least terna
was noted before, the usual relation is between, which yields the alig:
of the three points plus an ordering. Such relations have been rarely u
Al Betweenness is axiomatized as a primitive relation in Vieu (1993)
the lines of van Benthem (1983), and also in Borgo et al. (1996a) foll
Tarski (1972). In these two papers, however, points are not really the
entities of the theories; they are introduced as sets of regions or (impl
as centers of spheres.

Representation of orientation concepts in Al is most often tacklec
the vectorial geometry point of view, which has been widely restric
two-dimensional local spaces.?

Local reference frames. Herndndez (1994), Freksa (1992b), and L.
(1993) all express the contextual orientation of a located point with r«
to a reference point, as seen from a perspective point. They apply
reference point a local reference frame in which the frontal direction is
by the direction (perspective point, reference point). These authors al
the relation algebra approach and describe the inferential behavior |
primitive relations in transitivity tables.

Their approaches differ according to the orientational structt
the reference frame. Herndndez uses four axes for two-dimensional
resulting in the segmentation of the plane around the reference poin
eight cone-shaped sectors, each centered around an half-axis: front,
front, right, right-back, back, left-back, left, and left-front, yielding
possible relations over the triplet.

Freksa uses only two axes, which segment the plane into four quac
falling between, not around, the axes: right-front, right-back, left-bacl
left-front. In addition, Freksa distinguishes the four half-axes as po
positions: front, right, back, left. This also yields eight relations, but h
quite different from Herndndez’s, since in this approach exact aligr
between the three points may be represented. Exchanging the ro
the reference and perspective points yields a new reference frame,
an opposed frontal direction and applied now to the original persp
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point. Combining the two reference frames thus obtained, Freksa gets three
axes making a double cross distinguishing six areas of the plane, six half
lines, and the segment between the two points — that is, thirteen different
relations, rising to fifteen if we add the two distinguished positions of the
reference and the perspective points (Figure 1). Ligozat (1993) generalizes
this calculus with any number of axes.

Figure 1. Freksa’s fifteen relations
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Order on angles.  Orientation relations can also be modeled with circular
orders -+ that is, with angle comparisons in the plane. In the most basic
of these orders (Schlieder, 1995), one compares the relative orientation
of, again, a located point with respect to a perspective point and a
reference point, through the characteristics of the angle A = (reference
point, perspective point, located point). The located point is then sﬂ;uated
either on the direction (perspective point, reference point) itself (A = 0),?
counterclockwise (0 < A < ) from it, or clockwise (—n < A < 0). This
is nothing more than the, say, left-right orientation induced by a reference
frame with a single axis. One can add the further distinction that the angle
is either acute (JA| < w/2) or obtuse, corresponding then to a reference
frame with two axes, distinguishing the four quadrants left-front, left-back,
right-back, and right-front (Latecki and Réhrig, 1993).

Schlieder (1993) generalizes the approach. Going around-the perspective
point in a predefined sense (say, counterclockwise, the positive sense),
starting from the reference point (or the direction (perspective point,
reference point)), any number of located points (or directions (perspective
point, located point)) may be ordered. This order correspond to the
comparison of several angles of the form (reference point, perspective point,
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located point). The orientational information contained in these generalize
circular orders is not equivalent to the straightforward use of a locs
reference frame.

A representation system equivalent to circular orders is achieved by a
axiomatic theory of directions in the plane (Aurnague, 1995). This theor:
takes directions as primitive entities, but those can be seen as equivalenc
classes of pairs of points, considering pairs of the kind (perspective point
located point). A ternary primitive relation Kd(D1, D2, D3) is axiomatize
so as to express that D1 is “closer” to D2 than to D3 — that is, tha
the absolute value of the angle (D1, D2) is smaller than that of (D1, D3)
Definitions of equal, opposite, and orthogonal direction to a direction anc
of median direction between two directions are introduced.

These last two approaches, based on angle comparison, are more
general and more qualitative than those based on local reference frames
or on distinguished angle values. Indeed, in the latter two, the number o
qualitative distinctions that the theory is able to make is fixed a priori
What is more, these distinctions induce discontinuities in the space or
the axes of the reference frame. In Hernéndez (1994), it is assumed that
a located point cannot fall exactly on the lines dividing the sectors, thus
excluding some positions, whereas in Freksa, (1992b) the same status is
given to a half axis and to full quadrant, which amounts to give infinitely
more precision to some positions than others. On the other hand, in
generalized circular orders as well as in the theory of directions, the number
of angles that can be distinguished is not fixed and rather depends on the
number of located points to be compared. In other words, the precision
of the theory adapts itself to the knowledge to be represented, and all
points of the space are treated homogeneously. If the importance of the
upper, frontal, and lateral axes in cognition justifies the use of a priori
axes in a particular application, then it is easy to add some particular
points or directions corresponding to these axes in the representation. To
be fully general, though, these calculi still require to be extended to three-
dimensional or even n-dimensional space.

1.3.1.2. Integrating Orientation and Distance

Qualitative distance notions have been significantly less treated than
orientation, and they are usually considered together with orientation
notions. According to the terminology introduced earlier, we distinguish
between approaches based on relative and discrete distance.

Relative distance. It is surprising that very little work has been
done modifying axiomatic Euclidean geometry, dropping some possibly
undesirable properties such as continuity (Archimedes’ axiom). In Vieu
(1993) introduced above, betweenness for orientation is complemented by
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the relation of ternary relative distance relation s closer to. The quaternary
equidistance relation may then be defined in the same theory, but the
integration of orientation and distance requires further improvement.

Zimmermann (1993) adds to Freksa's orientation representation system
a linear order on edges or line segments (point pairs) in order to compare
their length implicitly. The division of the plane is successively refined,
taking first into account the order between the three segments generated
by the three points (located, reference, and perspective points), then adding
the three segments generated by the orthogonal projections of the located
point onto the three axes of the double cross, and lastly enriching the
order along the lines of the so-called A-calculus (Zimmermann, 1995). It
is claimed that the integration of orientation and distance is achieved.
However, it is not clear exactly what the resulting system is. The relational
algebra combining all distinctions is not fully described in these papers.
The mapping between distance and orientation constraints — although
introduced at the representation level of the relative position of the three
located, reference, and perspective points — seems not to be exploited in
the transitivity tables.

Discrete distance. In Frank (1992a) and in Hernandez et al. (1995),
qualitative “naming” distances are introduced. Both articles deal with
granularity scales from the simple binary near-far scale to a totally ordered
scale of n distance steps or ranges, partitioning IR, into n intervals.
Addition (or subtraction) tables compute the distance between ¢ and ¢
(d(a,c)) from d(a,b) and d(b, c), where a, b, and ¢ are aligned.!0, Herndndes
et al. (1995) considers a variety of restrictions on the distance scales, such as
monotonically increasing interval length along the scale, and thus obtaing
several composition tables. Distance addition in the general case can only
be approximated by a disjunction of values. But even if triangle inequality is
respected, its limit case, equality, cannot imply the collinearity of the three
points. This is so because in a discrete scale, extreme values may absorb
the others — for instance, d(a,b) = very close, d(b,¢) = very close and
d(a,c) = very close are possible simultaneously, whether the three points
are aligned or not. As a consequence, in these systems, full integration of
distance and orientation is by definition impossible to reach.

In Herndndez et al. (1995) the conditions when a particular granularity,
or scale, has to be chosen are briefly discussed. Parameters such as the
nature of the orientational reference frame and the size of the reference
object are considered. However, the problem of how to switch granularities
according to a change in perspective or how to combine information at
various granularities is left aside in both approaches, while it is what is
really at stake when modeling granularity.
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logical frameworks. This may explain why the work covered by the term
diagrammatic reasoning is actually very diverse — for instance, see Glasgow
et al. (1995). In addition, it is not clear what exactly remains of the
pictorial space, if metric aspects are dropped, as the authors intend. Surely,
topological and orientation information remains, but it seems obvious that
areas such as language and vision integration and diagrammatic reasoning
should deal with some morphological aspects as well.

As a knowledge representational tool for space, the most important
problem this approach encounters is that of any global space — namely,
the difficulty to represent partial or vague information. The problem occurs
with topology, which is dependent on orientation (for instance, to represent
the fact that Spain and France share a boundary, it is necessary to know
their relative orientation), as well as with orientation alone (for instance,
it is impossible to store the information that Holland is north of France
without also knowing that it is north of Belgium and east of Great Britain).

The representational expressiveness as well as cognitive adequacy and
computational efficiency of this approach has been extensively commented
in Narayanan (1993).

1:3.3. INTERVAL-BASED SPACES

After the great impact of Allen’s interval calculus (Allen, 1983) in AI (see
Chapter 7), there have been several (similar) intents of extending it to
a multidimensional domain (Giisgen, 1989; Mukerjee, 1989; Mukerjee and
Joe, 1990). In this approach, spatial regions are represented by tuples of
intervals that are the projections of the regions on the axes of a given
absolute reference frame. Spatial relations between rectangular regions are
then expressed by a tuple of relations between two intervals for each axis,
in the relation algebra formalism. Since the relations belong to the set of
Allen’s thirteen relations (before, meets, overlaps, starts, started-by, during,
contains, equals, finishes, finished-by, overlapped-by, met-by, after), only
topological and orientational information is accounted for.

Even though intervals are situated relationally with respect to each
other, one can consider that space is more global than local. Indeed, using
intervals as coordinates, vectorial orientation is given the priority, and
topology depends on it. But mereotopology is more thoroughly accounted
for than in symbolic arrays. Direct representation of region overlap is
possible, and one distinguishes between inclusion in the interior (during)
and inclusion at the border (starts or finishes). In a way, this approach
extends the symbolic array one in dropping at the same time discreteness
and any remaining metric aspect. Relational, possibly partial, orders along
the axes replace numerical orders. However, since aggregation has not been
considered, all regions are rectangular (or parallelepipedic) shaped. As in
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arrays, they are all aligned along the axes of an arbitrary reference frame.

For those applications domain meeting these restrictions, this theory has
the advantages of Allen’s calculus: topology and orientation information is
freed from any distance and length information, and reasoning is eased by
the existence of efficient algorithms and transitivity tables.

The extension to nonaligned rectangles has been considered in Mukerjee
and Joe (1990) for two-dimensional space. Space is then local, as each
rectangle creates its own local intrinsic reference frame based on the
knowledge of which side is the “front” of the rectangle. The ease of
reasoning, however, is lost because there are more possible relations between
two rectangles that are nevertheless less precise, so that the transitivity
table is bigger and presents more ambiguity. There is an important
additional drawback at the expressivity level. The angle between the frontal
axes of the two rectangles is determined with an inaccuracy up to /2
degrees, which yields a high imprecision. Further, topological information
is completely lost. The same relation between two rectangles may describe
situations in which one rectangle includes, overlaps, touches, or is disjoint
from the other. The usefulness of this extension is then really dubious.

1.3.4. REGION-BASED SPACES

Contrarily to tuples of intervals, regions are extended entities of any shape.
This property makes the representational systems based on regions much
closer to spatial cognition, as we already said. In addition, they constitute
the only first-order theories that deal properly with topological concepts.
For these reasons, region-based theories and calculi can be viewed as the
right extension of Allen’s calculus for dimensions higher than one, regions
being to material objects and space portions such as “the inside of the glass”
or holes, what intervals (or periods) are to events and states. Actually,
the notion of region is independent from dimensionality, ertended entity
meaning only having a nonempty interior — that is, having the same
dimension as the whole space. However, the word region is commonly used
for spaces of dimension higher than one only.

Most existing axiomatic theories stem from the work of Whitehead and
Clarke on mereotopologies in formal ontology (Whitehead, 1929; Clarke,
1981; Clarke, 1985). This area of research has regained attention lately
(a good survey is present in Varzi (1994; 1996a)) and has become quite
developed in AI as well, as evidenced by the chapters by Casati and Varzi
(Chapter 3), Cohn, Bennett, Gooday and Gotts (Chapter 4), and Galton
(Chapter 10) in this book.

Whitehead and Clarke’s theories were based on a unique mereotopo-
logical primitive relation C (connection), axiomatized as symmetric,
reflexive, and extensional. Some authors now choose to separate mereology
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from topology with two primitive relations, such as proper part and
contact or external connection (Borgo et al., 1996a). Still some othgrs
introduce boundaries in their domain, thus obtaining mixed ontologies
(see Section 1.3.5 below). In Clarke’s theory as well as in most othe.rS,
it is possible to isolate an exhaustive set of eight mutually exclusive
mereotopological relations (DC, EC, PO, TPP, NTPP, TPP-1, NTPP-1,
EQ) and thus transform the axiomatic theory into a relation algebra
(Randell and Cohn, 1989). See Figure 2.

Figure 2. RCC eight relations

PO(a,b) TPP(a,b) NTPP(a,b) EQ(a,b) NTPP—!(a,b)TPP~!(a,b) EC(a,b) DC(a,b)
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For the mereological notions, Boolean operators of union, intersection,
and complement are added, sometimes based on a general fusion operator
(Clarke, 1981) as in standard mereology. For topological concepts on
regions, two different approaches have been taken.

1.3.4.1. Topology on Regions with and without Boundaries

The first approach fully exploits the classical topological distinctions of
open and closed regions. The introduction of interior and closure operators,
in a way similar to that of Boolean operators, is made possible in theories
where the complement definition and the axiomatics on C (or EC) are such
that a region and its complement are not connected. This is the case in
earlier theories such as Whitehead’s and Clarke’s.

Contrary to what Clarke seems to have thought, these theories do not
capture just any standard topology restricted to extended regions — that
is, without any region having an empty interior. Asher and Vieu (1995)
have given the models of the theory presented in Clarke (1981). These
are topologies restricted to nonempty regular regions!?. However, as shown
independently by several authors (Biacino and Gerla, 1991; Vieu, 1991),
this theory, when extended with a certain definition of points as sets of
regions (Clarke, 1985) (thus going higher order), has the unexpected result
of having the same models as standard mereology (EC becomes an empty
predicate). But it is still possible to give a more complex definition of points
that preserves topological properties (Asher and Vieu, 1995).
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With the topological notions of open and closed regions, different
notions of contact may be defined: external connection between two closed
regions or joint, contact between a closed region and an open one (as
between a region and its complement), and weak contact or adjacency in
which two closed regions touch without being connected. Contrary to the
first two kinds of contact, weak contact implies a discontinuity — that is,
the sum of the two regions is not connected!® (Asher and Vieu, 1995). It
must be noted that weak contact has an extension only in nondense models.

The same distinctions are introduced in Fleck (1996), which does
not present an axiomatic mereotopological theory on regions but directly
mathematical structures. The author shows how to constrain a classical
topology on IR™ and extract the right subsets corresponding to regions. In
this work, weak contact is modeled as holding between two open regions
whose common boundary has been deleted from the underlying space.
The two regions are thus both not connected and zero distance apart.
Two important differences can be noted between these structures and the
structures that are models of the theory presented in Asher and Vieu (1995).
On the one hand, even with deleted points, the remaining space may still
keep the density of IR". On the other hand, a weak contact implies not
only that the sum of the two regions is disconnected but also that the
whole space is disconnected because space has gaps where objects touch.
Change in touching is then difficult to cope with, and this solution seems
to be more relevant for a relative space approach than for an absolute one.
However, if the relative approach is in fact taken, then the appropriateness
of R™ with its classical topological and metric structure needs at least to be
discussed. For their part, pure mereotopological theories do not constrain
the dimensionality of space, neither its Euclidean character. They thus have
models that are classical topologies on IR", and models that are not (Lemon,
1996).

1.3.4.2. Topology on Nondifferentiated Regions

The second approach rejects the basic topological distinction of open and
closed regions, on the grounds that there is no cognitive evidence of which
regions corresponding to some location (for instance of physical objects)
should be open and which closed. An additional concern regarding the
theories of the previous approach is that, although they are not equal,
there is no region that embodies the mereological difference between
T and (the boundary). The best-known work in the approach based
on nondifferentiated regions is the much developed axiomatic theory by
.- Cohn’s group in Leeds, the so-called RCC theory or calculus (Randell

et al., 1992a; Gotts et al., 1996), although their first work belonged to
the previous approach (Randell and Cohn, 1989). A special attention is
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given to computational issues, and the corresponding relation algebra is
systematically derived. The chapter by Cohn, Bennett, Gooday and Gotts
in this book (Chapter 4) thoroughly describes this work. RCC is also
originally based on Clarke’s theory, but a slight change in the definition of
complement makes all regions (externally) connected to their complements.
In the mereotopological part of the theory, the set of eight mutually
exclusive relations described above is derived. The models are probably
similar to those of Clarke’s theory restricted to closed nonempty regular
subsets, but no formal proof has been published.

Rejecting the open-closed distinction has a number of drawbacks.
Different kinds of contact cannot be distinguished. More importantly
perhaps, all models are then nonatomic, which is problematic on a
computational point of view as well as on a cognitive one.

Quite similar results appear in Egenhofer and Franzosa (1991), taking
the relation algebra perspective from the start. Observing that any subset
z of a classical topological space can be represented with the pair of subsets

(.%,8:5), the authors describe topological relations between two subsets
through the emptiness or nonemptiness of the two by two intersections
of their interiors and boundaries. This method defines sixteen relations
between subsets that are reduced to eleven if the domain is restricted to
(subsets corresponding to) closed extended regions and to nine if further
restricted to regular regions — assumed in the paper to be what corresponds
to relevant space portions of physical space. These nine are the eight
relations described above, where partial overlap (PO) is split into two
relations depending on the emptiness of the intersection of the boundaries
of the two subsets. So, if the domain is further restricted to connected
regions without holes,!4 the nine relations are reduced to the usual eight.

In the same approach that models contact without taking into account
openness and closedness, there is the older work by Fleck on adjacency
structures on “cells” and fuzzy spaces (Fleck, 1987). Cell structures differ
from region structures in that, like in occupancy arrays, there is no
mereological relations between cells — that is, no cell contains or overlaps
another cell. Fleck shows that if adjacency sets (sets of cells sharing
the same contact zone) are classified according to the dimension of the
shared zone (point, line, surface, etc.), then adjacency structures over a cell
partition of IR™ fully characterize the topology of this space.

Actually, a recent trend tries to introduce distinctions between kinds
of connections and to classify connectedness in mereotopological theories,
whether with or without the open-closed distinction. The notions of “strong
connection” (connection along a spatial entity of dimension rn — 1in n-
dimensional space) and “simple” region or “well-connected” region (one-
piece region such that any two halves of it are strongly connected) are
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introduced in Gotts (1994b) and Borgo et al. (1996a). In this last paper,
mereological notions are introduced with the part primitive (P), and simple
region is the chosen primitive predicate to introduce topological ones —
without the open-closed distinction, thus this theory clearly belongs to the
second approach.

The definition of topological shape (connectivity order, which
distinguishes between “doughnuts” and “balis”) has proven to be possible
on the sole primitive of connection (Gotts, 1994b; Gotts et al., 1996); this
definition is also independent of the kind of approach chosen.

If region-based ontologies are clearly well suited to represent
mereotopological information, they seem to be less well suited for
orientation and distance information; or at least these notions on regions
have been much less investigated up to now.

1.3.4.3. Orientation

The direct modeling of the basic arrangement relations such as alignment or
betweenness on any kind of regions is not straightforward. The extension
of regions makes it difficult to consider a unique direction of alignment
between three regions and establish properties such as the transitivity of
alignment.

However, orientation is involved in morphology, at least implicitly. First
attempts to model morphology on regions can be found in two approaches.
First, the convex-hull operator has been axiomatized in RCC. It enables
a number of other concepts based on orientation and topology, such as
“inside” (Randell and Cohn, 1989), and morphological aspects based on the
position and number of concavities (Cohn, 1995) to be defined. In principle,
betweenness on regions should be definable in terms of convex-hull as well.
It remains to be proved that its desirable properties can be recovered.

In another approach, spheres!® are characterized on the basis of a
primitive relation of congruence between regions (Borgo et al., 1996a). In
this work, basic orientation notions on regions are then axiomatized in two
steps. Exploiting the correspondence between a sphere and a point (its
center), the authors first transpose Hilbert’s classical axiomatic geometry
on points to spheres. Geometrical notions are then extended to any kind of
region.

Working out the models of these two theories remains to be done. In
addition, it is not clear that all the desired properties of either convex-hull
or congruence are captured — that is, that these morphological notions
on which orientation depend are properly axiomatized. Indeed, in Lemon
(1996), it is shown that the axiomatization of convex-hull in the language
of RCC must be dependent on the dimension of the space, which is not the
case in RCC theory up to now.
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The application of vectorial orientation concepts originally introduced
on -p(‘)ints has also been transposed to regions. Approaches choosing this
option are in a way similar to the local version of multidimensional
extension of Allen’s calculus. Nevertheless, since orientation is there added
to topology instead of being the sole primitive notion, the shape of
regions is not a priori constrained, and topological relations are correctly
treated with their own primitives. In these works, regions are assumed
to be connected. In Herndndez (1994), the full relative position of two
two-dimensional regions is given by a pair of one of the standard eight
mereotopological relations and one of the eight sector orientation relations
(ef. Section 1.3.1.1).16 The local reference frame yielding the orientation
relations is modified to take into account the extension of the reference
object but not that of the located object. And, as regards orientation,
regions arc supposed to be approximated by rectangles. Even though
interesting deductions can be drawn when mixing topology and orientation,
this approach is still quite restricted and cannot be easily extended to deal
with morphology. In Aurnague (1995), the algebra of directions presented
above (cf. Section 1.3.1.1) is combined with Clarke’s calculus on regions.
The relative orientation between two regions, along one direction, is given
by a ternary version of Allen’s relations, thus implicitly comparing the
intervals that would result from a projection of the two regions on a straight
line oriented by the direction.

1.3.4.4. Distance

Distance on regions has received even less attention than orientation, and
in particular, it has not been considered in RCC yet. A pseudo-metric space
on regions hay been proposed in Gerla (1990), but distance is not qualitative
in this work.

A relative distance concept between points may be adapted to regions
and linked to mercotopology. The ternary relation is closer to would then
compare the shortest distances between regions. The null distance between
regions may be defined either as the smallest distance or as occurring
between regions in contact. It has to be noted that difficulties appear
when trying to adapt triangle inequality, because the extension of the
intermediate region has to be taken into account. Thus the link between
alignment and distance is not easily recovered. This may explain why this
approach has not been explored up to now.

In Borgo et al. (1996a) the notion of sphere, together with
mereotopological primitives and the morphological relation of congruence
(on which sphere is also defined), gives in principle a powerful means to deal
with distance. At present, only granularity aspects have been integrated in
the theory (Borgo et al., 1996b).
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1.3.5. SPACES WITH MIXED ONTOLOGIES

Some approaches are based on entities of various dimensionality. Their
spatial ontologies mix extended and nonextended entities, without
assuming interdefinability — for instance, without assuming that regions
are sets of points or points sets of regions. Incidence relationship between
entities of different categories replace ontological dependency.

Mereotopology on regions and lower-dimension entities. The motivations
behind these approaches are twofold. On the one hand, some authors hold
a cognitive justification before caring about ontological parsimony. They
argue that humans unproblematically handle both real and abstract spatial
entities in everyday spatial reasoning. In Gotts (1996b) and Galton (1996),
any range of dimensions can be modeled. Gotts (1996b) chooses a unique
asymmetrical primitive of incidence includes a chunk of holding between
entities of possibly different dimensions, whereas Galton (1996) uses a part
mereological primitive holding only between entities of the same dimension
and a topological primitive bounds. Theories such as these should also in
principle be able to define spatial concepts directly on the best-fit entities:
topology on extended entities, and alignment and distance on points. It
must be noted, though, that only mereotopological notions have been
axiomatized in this approach up to now.

On the other hand, the ontological parsimony lost on the domain can
actually be recovered on primitive concepts. Some authors are motivated
by the ontological concern of having few, as general as possible, primitive
notions. For instance, mereotopology can be axiomatized on regions and
points with a mereological primitive only (Eschenbach and Heydrich, 1993;
Eschenbach, 1994), assuming an additional primitive categorization (for
example, with a is a region predicate). Another approach is taken in
Smith (1993; ming). Smith axiomatizes mereotopology on regions and
boundaries (entities of any lower dimension). His theory is based on two
primitive relations, a mereological and a topological one, and no a priori
categorization is made on the domain: is a boundary is a defined predicate.
In these two theories, no attempt is made to model a range of dimensions
of more than two categories.

Clementini and DiFelice (1995) mainly look for mathematical
expressivity. Exploiting further the approach taken in Egenhofer and
Franzosa (1991) (see Section 1.3.4.2), they consider the possible
mereotopological relationships between two-dimensional regions and
boundaries (lines) in classical point-set topology. Several representational
methods are explored and compared, with set intersection, the three
topological functions of interior, exterior, and boundary, and the dimension
of the entities, as basic ontological primitives. The representation based on




SPATIAL REPRESENTATION AND REASONING IN Al 31

five primitive predicates (fouch, in, cross, overlap, disjoint) and on two
boundary functions is favored.

Geometry in the Qualitative Segmentation of Cartesian Space. An older
tradition in Al assumed a global space, in general Cartesian space, as
the underlying ontology for space. There, points (actually, coordinates)
were the basic primitive entities. Within this ontology of space, higher-
dimension entities such as regions are in principle defined as sets of points.
However, in practice, to be able to reason qualitatively, the representations
include several classes of entities. Some spatial relations, like topological
ones, are introduced directly over regions and are axiomatized more or less
independently of the fact that they are sets of points and more locally
than globally (without relying on the Cartesian frame of reference). In
these approaches, the intended ontology of space is point-based, but the
ontology of the representation actually is a mixed one. Forbus’s and Davis’s
important work aiming at qualitatively modeling space and motion can
be scen from this point of view (Davis, 1988; Davis, 1990; Forbus, 1983;
Forbus, 1995).

In Forbus (1983; 1995), the duality of this ontology is made explicit by
using both a metric diagram, which is a bounded piece of two-dimensional
Cartesian space (IR?), and a place vocabulary, which is a local space
with a mixed ontology of points, line segments, and regions. The place
vocabulary segments the underlying metric diagram into space portions
that are qualitatively mecaningful with respect to both the static objects
oceupying space and the mechanical characteristics of the motion to be
described. The assumption that space, whether physical or perceptual,
is global, point-based, and essentially metric and that qualitative spatial
representations are necessarily approximations with specific points of view
of this underlying space, seems to have led the author together with other
researchers to hold the so-called poverty conjecture: there is no problem-
independent purely qualitative representation of space (Forbus et al., 1987;
Forbus et al., 1991). Fortunately, now that a lot of work has been carried
out in Al on representations of space based on other ontologies, as this
chapter and this whole book should show, such a pessimistic statement has
become outdated. However, it would be very interesting to investigate how
the process of constructing the right place vocabulary from a particular
metric diagram and for a particular task, can be analyzed. Constructing
Voronoi diagrams seems to be a possible solution in some cases (Edwards,
1993). More generally, this problem must be related to the design task in
spatial reasoning (see Section 1.4.3).

In Davis (1988; 1990), the separation between the underlying global
space and its qualitative representation is less clear. The choice of classical
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Cartesian space (here IR?) as the underlying space is motivated by the fact
that, up to now, no alternative theory to Euclidean geometry has been
proposed that thoroughly and consistently models all aspects of space.
In reasoning qualitatively about space, this work indeed relies on a high
number of more or less well-known topological and geometrical theorems,
set in a logical framework. However, it does not clearly expound the
axiomatic theory of space actually used. The logical language itself (the
ontological categories, the primitive predicates and functions) is not clearly
circumscribed. Nevertheless, we believe that there are at least two reasons
to clearly give such a formal framework. First, there are several alternative
axiomatizations of Euclidean geometry, semantically equivalent but not
ontologically nor computationally equivalent. In order to be implementable,
the theory actually used must be made explicit. Second, the author uses
a number of restrictions on classical topology or geometry (such as spatial
regions that can be occupied by material objects must be regular) which
could be integrated in the theory, yielding a less general thus more efficient
representational framework. Working out an appropriate axiomatics for a
theory presenting spatial properties such as those used by Davis, without
taking for granted topological and geometrical theorems, is in fact the main
goal of the field we have been covering up to now.

1.3.6. SPACE AND TIME OR SPACE-TIME?

Lastly, let us say a short word about approaches combining space and
time. As is shown in the next section, reasoning ahout space often
involves reasoning about change in spatial configurations, thus reasoning
about space and time. When used with this purpose, the representational
frameworks above have usually been extended by a separate temporal
dimension or a set of temporal relations, relying on previous classical works
in temporal reasoning. This is the case in Galton’s chapter in this book,
for instance (Chapter 10). In this quite recent work, an essential aspect of
space and time integration — namely possible transitions from one spatial
configuration to another or continuity of motion — is analyzed and modeled
qualitatively.

However, much more is to be said to thoroughly integrate space and time
in qualitative representations. First, we believe that the very fact that space
and time are two clearly separated realms should be discussed. Many motion
concepts — like spinning, rolling, sliding, following, going around — do
not involve just change or transitions between two spatial situations. They
directly hold over trajectories or “histories” in Hayes’s terminology (Hayes,
1985b) — that is, four-dimensional spatiotemporal entities. Some describe
the intrinsic shape of a history; others describe complex spatiotemporal
relations between two histories.!” New theories based on spatiotemporal
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basic entities and spatiotemporal primitive relations could be obtained. It
may then be possible to define space and time — that is, purely gpatial
or purely temporal relations. However, it is clear that constructing such
theories is really a hard problem.

Second, even if one considers space and time separately, it seems that the
question of the existence of some ontological dependencies throughout the
two realms should be addressed. For instance, when is it sensible to keep the
following “natural” correspondence? If space is point-based, then time will
be instant-based; if space is region-based, then time will be interval-based;
if space is global, then time will be just another dimensional axis. It must
be noted that authors do not always adopt this kind of homogeneity. On
the contrary, Galton’s work shows that representing continuous motion on
spatial regions requires a mixed temporal ontology of instants and intervals.

To the best of our knowledge, such spatiotemporal ontological questions
have only begun to be addressed, and consequently, little work has been
done on qualitative representations of space-time.

1.4. Classes of Spatial Reasoning

It must be noted from the start that there is no such a thing as a “spatial
logic” field, that can be compared to the temporal logic field. Problems
of spatial reasoning involving the change in truth value of a proposition
according to a change in location in space have been rarely tackled. von
Wright (1979) constitutes a notable exception and proposes a modal logic of
spatial operators such as somewhere or nearby. A very recent work sets up
some requirements for modal spatial logics of this kind (Lemon, 1996). In
short, spatial reasoning has little to do with a three-dimensional equivalent
of reasoning on persistence, action, and change or at least, this is the case
up to now.

Nevertheless, spatial reasoning can be seen as a much older field of Al
than spatial representation. Much work done in path planning, in motion
prediction, and in shape recognition belongs to this field without any
doubt. But on the other hand, spatial representation being a far younger
issue, most work in spatial reasoning has been dome without using the
qualitative representations of space described above. As a consequence, the
correspondence and the potential mutual enrichment between the two fields
have not been fully exploited. And in fact, maybe because of not having
carefully considered the ontological issue of spatial representation, spatial
reasoning is a field that has not been systematically structured in a widely
admitted fashion. This section aims only at describing a possible way of
structuring the field of spatial reasoning and not at describing in detail
the work reported. Whenever possible, the focus will be given to reasoning
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with respect to the representational frameworks described in the previous
section.

The point of view adopted here tries to group approaches with respect
to how they handle spatial knowledge and spatial representations. Only
in a second step does it consider classes of problems linked to application
domains. In this light, the main objectives adopted by a particular approach
to reasoning over spatial knowledge may be

— Exploiting the spatial information and knowledge contained in a
representation (deduction),

— Changing a representation into a different format (translation and
interpretation), and

— Constructing a representation according to several constraints
(design).

1.4.1. DEDUCTION WITHIN REPRESENTATIONS OF SPACE

The most basic reasoning task is to exploit the spatial knowledge and spatial
information encoded inside a representational framework. Two cases can
be distinguished according to the completeness or incompleteness of this
knowledge and information.

1.4.1.1. Simple Deduction

The first case of deduction aims at making explicit a fact already implicit
in the representation, by exploiting properties of spatial relations, often
combining two or more explicit facts. This is necessary in local spaces,
where not all information is explicitly encoded, but not in global spaces
in which spatial relations can be directly “read” or at least calculated
numerically. The paradigmatic case of this kind of deduction, if not the
most simple case, is theorem proving in axiomatic theories of space. The
efficiency of such a task lies mainly on the choice of an adequate ontology.
From this standpoint, higher order representations are to be avoided.
But first-order theories do not necessarily guarantee tractability. In order
to significantly enhance the computational ease of simple deduction, the
field has generalized the use of relational algebras and transitivity tables
or composition tables (see Section 1.2.1.2). Transitivity tables encode all
possible compositions of relations, which have been computed once and for
all. Thus, they replace theorem proving by a simple look-up operation. This
method, originally developed in the field of temporal reasoning, is described
and applied in Cohn et al.’s chapter of this book (Chapter 4) as well as in
Freksa (1992b), Randell and Cohn (1989), Randell et al. (1992a), Egenhofer
(1991), Hernéndez (1994), Grigni et al. (1995), Zimmermann (1993), among
others.
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Another way to reduce the computational complexity of general theorem
proving is to apply constraint satisfaction methods, as done also in
Hernandez (1994) and Grigni et al. (1995). Converting first-order theories
into propositional intuitionistic or modal logics is still another method that
has been applied to acquire decidability (Bennett, 1994b; Nebel, 1995).

1.4.1.2. Deduction on Partial or Uncertain Information and Egztrapolation
When information or knowledge is incomplete or uncertain, one can try to
infer possible facts on the basis of hypotheses on the structure of space or
space-time.

In static space, one of the main problems concerns the vagueness or the
uncertainty of region boundaries or, if the ontology is boundary-free, on the
vagueness of the relationship between regions. Freksa (1991) first suggested
applying neighborhood structures previously introduced in the temporal
domain (Freksa, 1992a) to the spatial domain. These structures, which
indeed have many applications (see below), were assumed to serve as a basis
for reasoning under uncertainty. The so-called “egg-yolk representation”
considers disjunctions of possible relations between regions, building on the
RCC theory and indeed exploiting neighboring properties between possible
relations (Cohn and Gotts, 1996a) (see also Cohn et al.’s chapter in this
book, Chapter4). Another approach applies nonmonotonic logic to spatial
extrapolation, trying to “fill in” holes of uncertainty, in a fashion akin to
persistence in time (Asher and Lang, 1994). This kind of work indicates a
possible way to study spatial logics. Introducing the possibility of dealing
with incomplete information in geographical information systems would be
an important application domain.

Dealing with uncertainty in space-time has yielded a much more
developed research trend — that of spatial envisionment or motion
extrapolation. The aim is to simulate the spatiotemporal behavior of, in
general, solid objects or more simply to predict the result of a motion.
This domain of research exploits not only theories of space and time but
also physical theories, such as mechanics. Three main approaches can
be distinguished. The first, usually called qualitative kinematics adopts
the general methodology of qualitative physics. State-graphs based on
a particular segmentation of a Cartesian space (see Section 1.3.5) are
exploited in several projects, each state-graph being highly task-dependent
(Forbus, 1983; Forbus, 1995; Faltings, 1990; Forbus et al., 1991) No spatial
or mechanical properties are applied in an explicit way, as the authors
themselves claim to be impossible in the poverty conjecture. In addition
to being thus a hardly generalizable approach, it must be noted that the
complexity of simulation in the state-graphs increases rapidly with the
number of static and moving objects.

The second approach applies the theorem-proving method. Davis (1988)
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does it in the framework of a logical model of topology, classical geometry,
and mechanics (see Section 1.3.5). Nielsen (1988) exploits logical mechanical
postulates in a similar framework but dramatically simplifies the coordinate
space for vectors, using three values only (-,0,4), in the more classical spirit
of qualitative physics. The logical approach is also adopted in naive physics,
but with the aim to reason about the world in a similar fashion to how
people do (Hayes, 1985b; Hayes, 1985a). The theory of mental space-time
(the theory of spatial and temporal relations holding on histories that naive
physics is supposed to use) has not been fully developed, though.

The third approach, more recent, tries to systematically capture in
neighborhood structures, continuity graphs, or transition graphs, the
continuity of motion as a general property of spatial relations (Hernandez,
1993; Cui et al., 1992; Galton, 1993) (see also Cohn et al’s and Galton’s
chapters in this book, Chapters 4 and 10). Two spatial relations are
neighbors if a continuous change can yield a direct transition from one
relation to the other. From these abstract graphs one can then derive
the particular state-graph corresponding to a specific envisionment task.
Even where orientation is taken into account, it must be noted that it
is purely static orientation. Dynamic orientation is not represented, and
as a consequence, reasoning on directions of motion, which is obviously a
very important aspect of motion prediction, has not been tackled in this
approach.

1.4.2. TRANSLATION BETWEEN SPATIAL REPRESENTATIONS

Converting information represented in one kind of spatial representation
framework into another of another kind is another class of spatial reasoning.

1.4.2.1. Language and Vision Integration.
This area significantly overlaps the fields of computer vision, shape, and
object recognition, which will not be discussed here because they are almost
all based on global numerical representations of space and computational
geometry algorithms (see, for example, Marr (1982), Ballard and Brown
(1982), and Chen (1990). It is nonetheless interesting to mention here work
aiming at integrating language and vision, an area that is growing lately
(McKevitt, 1996). It draws on previous research done in both computer
vision and natural language processing (understanding and generation).
Clearly, the most important work on this topic has been done within the
project VITRA over the last ten years (Wahlster, 1987; André et al., 1988;
Herzog and Wazinski, 1994, Maass, 1995). There as in (Olivier et al., 1994),
the numerical 2D representation of images is also used as the basic spatial
representation for encoding the semantics of spatial expressions.

However, from a cognitive point of view as well as from a formal
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ontological point of view, language and vision integration raises its
own classes of problems. Combining a global space, numerical or not,
adequate to represent visual space, and a local space, more adequate for
linguistic space, leads to interesting theoretical developments in spatial
representation and, more generally, in hybrid reasoning (Habel, 1990;
Latecki and Pribbenow, 1992; Habel et al., 1995; Borillo and Pensec, 1995).
Work in this area, which we believe to have only begun to appear, exploits
sudies on cognitive space — for instance, Herskovits’s (Chapter 6) — in a
systematic way. It will most probably in turn induce progress in the fields
of high-level vision and the processing of spatial expressions.

1.4.2.2. Change in Perspective or Granularity.

It is also worth discussing here reasoning concerning change of point of view
or granularity, although a single representational framework is sometimes
used, and thus it could be considered as merely a special case of deduction.

Change in perspective is a frequent operation affecting orientation
relations. In natural language, for instance, one often finds switches from
an intrinsic reference frame to a deictic one (or the other way around),
or if deictic orientation is maintained, the speaker may change in position
so that the perspective point may change. These transformation are, of
course, important as well in all domains where point of view is important.
Hernsndez (1993; 1994) gives an account of how these operations can
be modeled within the kind of representational framework presented in
Section 1.3.1.1.

Dealing with granularity and granularity change is a very important
aspect of qualitative reasoning. A few generic solutions have been proposed,
and one of them applied to a (nonmetric) global space (Hobbs, 1985; Hobbs
et al., 1987). In this approach, the grain is an explicit parameter. This is also
the case in (Borgo et al., 1996b), where granularity is defined in a region-
based local space (see Section 1.3.4.4). There, the “grain” is a particular
entity chosen as a reference, identified by a predicate.

But there is another way to deal with granularity: implicitly, with
operators switching between several subrepresentations. On the one hand,
the domain of entities may vary in cardinality, as more or fewer spatial
entities are distinguished in the different, discrete, subrepresentations. For
instance, an atomic region may become nonatomic if one distinguishes
several parts in it, and conversely, a nonatomic region may become atomic
if its parts are no longer distinguished; the cells of the arrays may
be subdivided into smaller cells or grouped into a unique bigger cell;
in a nondense space of points, points may be added or removed. The
hierarchical structures that have been introduced for array representations
enable this kind of switch in granularity (Samet, 1984; Samet, 1989;
Glasgow, 1993). A modal operator of refinement together with its converse
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has also been introduced on a region-based mereotopology, in particular
to deal with the relativity of weak contact (Asher and Vieu, 1995) (see
Section 1.3.4.1). In mereotopologies based on mixed ontologies, it would be
interesting to try to model the abstraction process of seeing a region as a
surface, line or point and, conversely, the refinement process of, for example,
seeing a point as an extended entity. We believe that modal operators could
be introduced in a similar fashion.

On the other hand, the domain of entities being fixed, the spatial
relations may vary, some relations being considered as potentially coarser
than others (for instance, contact taken to hold at a coarse granularity, is
supposed to possibly disappear at a closer look). Euzenat (1995) exploits
again neighborhood structures in an interval-based representation. Here, in
fact, granularity is just another way to apprehend uncertainty.

1.4.3. DESIGN

Finally, it is impossible not to mention the class of problems related to
the construction of spatial or spatiotemporal configurations filling certain
requirements. This belongs to the general area of design and decision in Al
and involves obtaining new spatial representations with additional entities.

This area includes one of the most important spatial problem humans
have to solve a great part of their time — namely, route-finding. Indeed,
for years most of the work in spatial reasoning has been done in this
area. As said earlier, this large area cannot be covered here. Let us
Jjust recall that literature distinguishes between path planning at a small
scale and route planning at a larger scale and add a word on the
kind of spatial representations used to perform design in space-time.
Path planning or motion planning uses numerical spatial representations,
fitting the data robots are able to collect from their environment through
sensors. Consequently, numerical global spaces are widely used. A variety
of computational geometry algorithms and search algorithms operating
on these representations have been developed. A classical, representative
approach is based on a configuration-space representation — a dense
coordinate space in which the robot’s position is reduced to a point by
appropriate transformations on the environment (Lozano-Pérez, 1983).
Discrete global spaces (arrays) as well as local spaces based on cells
and an adjacency relation, sometimes hierarchized to optimize search,
have also been used (Slack and Miller, 1987; Fujimura and Samet, 1989).
For a review of this area, see, for example, Latombe. (1990) and Burger
and Bhanu (1992). In route planning in a larger-scale environment, or
navigation, the robot has to reason over spatial representations that do
not need to directly match the sensor data. A classical approach is based
on a cognitive map — a local spatial representation inspired by cognitive
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psychology results, whose mixed ontology combine regions, points and
lines (or paths) into a network (Kuipers, 1978; Kuipers and Levitt, 1988;
Levitt and Lawton, 1990). Search algorithms exploit the hierarchy created
in the graph by part-whole relations over regions and incidence between
points and regions. Besides route planning, gathering information to
complete the cognitive map is an important issue addressed in this work as
well.

Design in pure space, or space planning, is relevant to several domains of
application, including architecture and land management. 1t covers a class
of problems such as how to fit a room with furniture or how to design the
plan of a new site. Here too, a variety of search methods have been applied
to different kinds of spatial representations. Constraint satisfaction methods
applied to local spaces have given interesting results (Baykan and Fox, 1987;
du Verdier, 1993).

1.5. Conclusions

Much progress has been made in the search for new spatial ontologies
and new spatial representational frameworks in the past few years, and
we hope this chapter gives a good overview of this progress. Nevertheless,
obtaining cognitively more adequate spatial representations is still essential
for applications in natural language processing and multimodal interfaces.
Constructing a complete representation of physical space in which a variety
of qualitative reasoning tasks can be performed is still an open issue. What
is more, reasoning on both kinds of spaces, commonsense and physical,
is of a crucial importance — for instance, in geographical information
systems. Looking for most generic theories of space or considering how
to integrate several representations and looking for translation methods
between different representations are possible ways to address this last issue.
From these three points of view, new developments in spatial representation
and in spatial reasoning are needed.

Several major directions of research already engaged toward this goal
can be sketched:

— To look systematically for nonclassical theories of space, taking up
theories already proposed in mathematics or developing new theories.
This could be done with all kinds of ontclogies, based on points,
extended entities, and mixed ones. We believe that the full integration
of topology, distance, and orientation concepts should be focused on.
In particular, a first-order axiomatization of Euclidean geometry based
on extended entities should be achieved. This may not guarantee that
morphological concepts are easily handled in the theory, so systematic
theories of shape should be developed, looking for adequate primitive
concepts. With the aims of modeling mental space and obtaining a
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computationally effective theory, we must work out non-Euclidean
geometries as well — for instance, dropping density or properly dealing
with the variety of commonsense contact and boundary notions. This is
one of the main lines of research adopted now in the field of qualitative
spatial reasoning, of which the work described in Cohn et al.’s chapter
in this book (Chapter 4) is an excellent representative. In this domain,
there is an increasing awareness, if not a complete integration, of
developments along a parallel line of research in formal ontology of
space, for the great benefit of the discipline (see, for example, Varzi
(1996a) and Casati and Varzi chapter, Chapter 3).

— To integrate and exploit non-purely spatial properties in theories of
space. A way toward this goal is to consider seriously relative space
— that is,theories of spatial relations on concrete entities — instead
of abstract purely spatial entities. Alternatively, we could study the
properties of the localizing function with respect to the properties of
the entities located in an absolute space — that is to say, investigate
the ontological dependencies between space and other realms such
as matter. This approach may cast a new light on the choice of
adequate ontologies of absolute spaces in the previous direction of
research. Casati and Varzi’s chapter in this book (Chapter 3) clearly
opens this line of research, to which Aurnague and Vieu (1993) and
Borgo et al. (1996b) have also contributed. Further investigating which
ontological categories are worth considering (for instance, refining the
dichotomy material-immaterial entities) may be done exploiting, for
example, results in linguistics, cognitive psychology, or application
domains involving physical space. Frank’s and Herskovits’s chapters
in this book (Chapter 5 and 6) contribute toward this goal.

— To consider space-time as an integrated realm. Theories of
motion based on histories as basic entities and genuine primitive
spatiotemporal concepts must be developed. It is difficult to claim that
this line of research has really begun, but work like that reported in
Galton’s chapter in this book (Chapter 10)could help start it.

— To develop spatial logics where connectives have a spatial (or
spatiotemporal) meaning, not just to obtain more tractable version
of first-order theories of space, but as frameworks for reasoning about
space under uncertainty, or as frameworks for diagrammatic reasoning
— that is, reasoning on constructing, combining, and transforming
diagrams. As mentioned in Section 1.4, little work has been published
in this area. We nonetheless believe it is of importance for the field in
the future.
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Notes

! The term relational is also found.

2 The domain can hold three types of entities — points, lines, and planes — with
an incidence relation (not membership) between them. In Tarski (1959), an axiomatic
system of Euclidean geometry based only on points is proposed; in this same system,
continuity axioms are freed from any reference to arithmetic.

3 When transposed to Al, one can see reasoning in global spaces as model-based and
reasoning in local spaces as deductive. However, model-based reasoning in global spaces
is in general replaced by more efficient numerical algorithmic methods.

4 Defining “good” identity criteria is very difficult. Spatiotemporal continuity is,
however, often adopted as one of these criteria, which in this case would make the
definition of continuity of motion circular.

5 For a review of possible ways of defining points in terms of regions, see Gerla {1994).

6 When there are no boundaries (as, for instance, for the whole space), the subset is
both open and closed.

7 For instance, in the standard topology of R, IR?, or IR®, all open sets but the empty
set are of the same dimensionality as the whole topological space.

8 In the TACITUS project (Hobbs et al., 1987; Hobbs et al., 1988), a point-based global
space is proposed, with independent “scales” or granular partial order relations (one for
each axis).

9 In all generality, the case A = m should be distinguished.

10 This means that these distance calculi require some underlying orientation system.

11 Tp restrict memory size, they are sometimes compacted and hierarchically organized,
as in Samet (1984; 1989).

ry ]

12 Regions extended throughout or, formally, regions x such that T = % and T=T.

13 Phis way, a distinction can be made between jointing along a “fat boundary” (Smith,
1995) (for example, the relation between two halves of a ball) and touching along real,
obiective, boundaries (for example, the relation between the ball and the ground).

1 Note that Clarke's theory and RCC do not imply this last restriction.

15 One may question the cognitive or physical plausibility of these particular regions.
Indeed, perfect spheres may be seen as entities as abstract as points. As a consequence,
a region-based geometry relying on the existence of spheres may be no more attractive
than a point-based geometry.

16 Eycept when there is a NTP relation between them or when they are equal, in which
case orientation has no meaning. Notice that Hernindez assumes that a TPP relation can
be combined with orientation, cousidering the position of the common boundary, thus
forbidding this shared boundary to be very long or to be scattered around the regions.

1T This includes the case of the relation between one history and a static object, since
immobility can be seen as being relative to a point of view.




